Search result: Catalogue data in Autumn Semester 2016

Environmental Sciences Bachelor Information
Bachelor Studies (Programme Regulations 2011)
Basic Courses II
Examination Blocks
Examination Block 2
NumberTitleTypeECTSHoursLecturers
701-0023-00LAtmosphere Information O3 credits2VH. Wernli, E. Fischer, T. Peter
AbstractBasic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.
ObjectiveUnderstanding of basic physical and chemical processes in the atmosphere. Understanding of mechanisms of and interactions between: weather - climate, atmosphere - ocean - continents, troposhere - stratosphere. Understanding of environmentally relevant structures and processes on vastly differing scales. Basis for the modelling of complex interrelations in the atmospehre.
ContentBasic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.
Lecture notesWritten information will be supplied.
Literature- John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
- Gösta H. Liljequist, Allgemeine Meteorologie, Vieweg, Braunschweig, 1974.
701-0071-00LMathematics III: Systems AnalysisO4 credits2V + 1UN. Gruber, D. Byrne
AbstractThe objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.
ObjectiveLearning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.
ContentLink
Lecture notesOverhead slides will be made available through Ilias.
LiteratureImboden, D.S. and S. Pfenninger (2013) Introduction to Systems Analysis: Mathematically Modeling Natural Systems. Berlin Heidelberg: Springer Verlag.

Link
701-0401-00LHydrosphereO3 credits2VR. Kipfer, C. Roques
AbstractQualitative and quantitative understanding of the physical processes that control the terrestrial water cycle. Energy and mass exchange, mixing and transport processes are described and the coupling of the hydrosphere with the atmosphere and the solid Earth are discussed.
ObjectiveQualitative and quantitative understanding of the physical processes that control the terrestrial water cycle. Energy and mass exchange, mixing and transport processes are described and the coupling of the hydrosphere with the atmosphere and the solid Earth are discussed.
ContentTopics of the course.
Physical properties of water (i.e. density and equation of state)
- global water resources
Exchange at boundaries
- energy (thermal & kinetic), gas exchange
Mixing and transport processes in open waters
- vertical stratification, large scale transport
- turbulence and mixing
- mixing and exchange processes in rivers
Groundwater and its dynamics
- ground water as part of the terrestrial water cycle
- ground water hydraulics, Darcy's law
- aquifers and their properties
- hydrochemistry and tracer
- ground water use
Case studies
- 1. Water as resource, 2. Water and climate
Lecture notesIn addition to the suggested literature handouts are distributed.
LiteratureSuggested literature.
a) Park, Ch., 2001, The Environment, Routledge, 2001
b) Price, M., 1996. Introducing groundwater. Chapman & Hall, London u.a.
Prerequisites / NoticeThe case studies and the analysis of the questions and problems are integral part of the course.
701-0501-00LPedosphere Information O3 credits2VR. Kretzschmar
AbstractIntroduction to the formation and properties of soils as a function of parent rock, landscape position, climate, and soil organisms. Complex relationships between soil forming processes, physical and chemical soil properties, soil biota, and ecological soil properties are explained and illustrated by numerous examples.
ObjectiveIntroduction to the formation and properties of soils as a function of parent rock, landscape position, climate, and soil organisms. Complex relationships between soil forming processes, physical and chemical soil properties, soil biota, and ecological soil properties are explained and illustrated by numerous examples.
ContentDefinition of the pedosphere, soil functions, rocks as parent materials, minerals and weathering, soil organisms, soil organic matter, physical soil properties and functions, chemical soil properties and functions, soil formation, principles of soil classification, global soil regions, soil fertility, land use and soil degradation.
Lecture notesLecture notes can be purchased during the first lecture (15.- SFr)
Literature- Scheffer/Schachtschabel - Soil Science, Springer, Heidelberg, 2016.

- Brady N.C. and Weil, R.R. The Nature and Properties of Soils. 14th ed. Prentice Hall, 2007.
Prerequisites / NoticePrerequisites: Basic knowledge in chemistry, biology and geology.
  •  Page  1  of  1