Search result: Catalogue data in Autumn Semester 2016

Mechanical Engineering Bachelor Information
5. Semester
Focus Specialization
Mechatronics
Focus Coordinator: Prof. Bradley Nelson
To achieve the 20 credits for Focus Specialization Mechatronics, 151-0640-00L Studies on Mechatronics is compulsory.
NumberTitleTypeECTSHoursLecturers
» Compulsory Courses
151-0640-00LStudies on Mechatronics Information Restricted registration - show details
The following professors can be chosen and please contact the professor directly:
M. Chli, R. D'Andrea, J. Dual, E. Frazzoli, R. Gassert, C. Hierold, M. Hutter, W. Karlen, J. Lygeros, M. Meboldt, B. Nelson, C. Onder, M. Pollefeys, D. Poulikakos, R. Riener, R.Y. Siegwart, L. Thiele, K. Wegener and M. Zeilinger

This course is not available to incoming exchange students.
O5 credits11AProfessors
AbstractOverview of Mechatronics topics and study subjects. Identification of minimum 10 pertinent refereed articles or works in the literature in consultation with supervisor or instructor. After 4 weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After feedback on the substance and technical writing by the instructor, project commences.
ObjectiveThe students are familiar with the challenges of the fascinating and interdisciplinary field of Mechatronics and Mikrosystems. They are introduced in the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently.
ContentThe students work independently on a study of selected topics in the field of Mechatronics or Microsystems. They start with a selection of scientific papers to continue literature research. The results (e.g. state-of-the-art, methods) are evaluated with respect to predefined criteria. Then the results are presented in an oral presentation and summarized in a report, which takes the discussion of the presentation into account.
Literaturewill be available
» Elective Courses
151-0509-00LMicroscale Acoustofluidics Restricted registration - show details
Number of participants limited to 30.
W4 credits3GJ. Dual
AbstractIn this lecture the basics as well as practical aspects (from modelling to design and fabrication ) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices.
ObjectiveUnderstanding acoustophoresis, the design of devices and potential applications
ContentLinear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices
Lecture notesYes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
LiteratureMicroscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
Prerequisites / NoticeSolid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab session and hand in homework.
151-0575-01LSignals and Systems Information W4 credits2V + 2UR. D'Andrea
AbstractSignals arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals.
ObjectiveMaster the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise.
ContentDiscrete-time signals and systems. Fourier- and z-Transforms. Frequency domain characterization of signals and systems. System identification. Time series analysis. Filter design.
Lecture notesLecture notes available on course website.
151-0604-00LMicrorobotics Information
Does not take place this semester.
W4 credits3GB. Nelson
AbstractMicrorobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination.
ObjectiveThe objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
ContentMain topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots
Lecture notesThe powerpoint slides presented in the lectures will be made available in hardcopy and as pdf files. Several readings will also be made available electronically.
Prerequisites / NoticeThe lecture will be taught in English.
151-0621-00LMicrosystems Technology Information W6 credits4GC. Hierold, M. Haluska
AbstractStudents are introduced to the basics of micromachining and silicon process technology and will learn about the fabrication of microsystems and -devices by a sequence of defined processing steps (process flow).
ObjectiveStudents are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps ( = process flow).
Content- Introduction to microsystems technology (MST) and micro electro mechanical systems (MEMS)
- Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition.
- Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical and thermal properties, piezoelectric and piezoresitive materials.
- Selected microsystems: Mechanical sensors and actuators, microresonators, thermal sensors and actuators, system integration and encapsulation.
Lecture notesHandouts (available online)
Literature- S.M. Sze: Semiconductor Devices, Physics and Technology
- W. Menz, J. Mohr, O.Paul: Microsystem Technology
- G. Kovacs: Micromachined Transducer Sourcebook
Prerequisites / NoticePrerequisites: Physics I and II
227-0113-00LPower Electronics Information W6 credits4GJ. W. Kolar
AbstractFields of application of power electronic systems. Principle of operation of basic pulse-width modulated and line-commutated power electronic converters, analysis of the operating behavior and of the control oriented behavior, converter design. Reduction of effects of line-commutated rectifiers on the mains, electromagnetic compatibility.
ObjectiveFields of application of power electronic systems. Principle of operation of basic pulse-width modulated and line-commutated power electronic converters, analysis of the operating behavior and of the controloriented behavior, converter design. Reduction of effects of line-commutated rectifiers on the mains, electromagnetic compatibility.
ContentBasic structure of power electronic systems, applications. DC/DC converters, high frequency isolation, control oriented modeling / state-space averaging and PWM switch model. Power semiconductors, non-idealities, cooling. Magnetic components, skin and proximity effect, design. Electromagnetic compatibility. Single-phase diode bridge with capacitive smoothing, effects on the mains, power factor correction / PWM rectifier. Pulse-width modulated single-phase and three-phase full bridge converter with impressed DC voltage, modulation schemes, space vector calculus. Line-commutated single-phase full bridge with impressed output current, commutation, phase-control, inverter operation, commutation failure. Line-commutated three-phase full bridge converter, impressed output voltage, impressed output current / phase-control. Parallel connection of three-phase line-commutated thyristor circuits, inter-phase transformer. Anti-parallel connection of three-phase line-commutated thyristor bridge circuits, four-quadrant DC motor drive. Load-resonant converters, state plane analysis.
Lecture notesLecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features.
Prerequisites / NoticePrerequisites: Basic knowledge of electric circuit analysis and signal theory.
227-0517-00LElectrical Drive Systems IIW6 credits4GP. Steimer, G. Scheuer, C. A. Stulz
AbstractIn the course "Drive System II" the power semiconductors are repeated. The creation of converters based on the combination of switches/cells and based topologies is explained. Another main focus is on the 3-level inverter with its switching and transfer functions. Further topics are the control of the synchronous machine, of line-side converters and issues with converter-fed machines
ObjectiveThe students establish a deeper understanding in regards of the design of the main components of an electrical drive system. They establish knowledge on the most important interaction with the grid and the machine and their related high dynamic control.
ContentConverter topologies (switch or cell based), multi-pulse diode rectifiers, system aspects of transfomer and electrical machines, 3-level inverter with its switching and transfer functions, grid side harmonics, modeling and control of synchronous machines (including permanent magnet machines), control of line-side converters, reflection effects with power cables, winding isolation and bearing stress. Field trip to ABB Semionductors.
Lecture notesSkript is sold at the beginning of the lectures or can be downloaded from Ilias
LiteratureSkript of lecture; References in skript to related technical publications and books
Prerequisites / NoticePrerequisites: Electrical Drive Systems I (recommended), Basics in electrical engineering, power electronics, automation and mechatronics
376-1504-00LPhysical Human Robot Interaction (pHRI) Restricted registration - show details
Number of participants limited to 26.
W4 credits2V + 2UR. Gassert, O. Lambercy
AbstractThis course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems.
ObjectiveThe objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems.

By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de- sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to:

1) identify critical human factors in physical human-robot interaction and use these to derive design requirements;
2) compare and select mechatronic components that optimally fulfill the defined design requirements;
3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components
into a functional system;
4) design control hardware and software and implement and
test human-interactive control strategies on the physical
setup;
5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics;
6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation.
ContentThis course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits.
Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (Link), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties.
Lecture notesWill be distributed through the document repository before the lectures.
Link
LiteratureAbbott, J. and Okamura, A. (2005). Effects of position quantization and sampling rate on virtual-wall passivity. Robotics, IEEE Transactions on, 21(5):952 - 964.
Adams, R. and Hannaford, B. (1999). Stable haptic interaction with virtual environments. Robotics and Automation, IEEE Transactions on, 15(3):465 -474.
Buerger, S. and Hogan, N. (2007). Complementary stability and loop shaping for improved human ndash;robot interaction. Robotics, IEEE Transactions on, 23(2):232 -244.
Burdea, G. and Brooks, F. (1996). Force and touch feedback for virtual reality. John Wiley & Sons New York NY.
Colgate, J. and Brown, J. (1994). Factors affecting the z-width of a haptic display. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages 3205 -3210 vol.4.
Diolaiti, N., Niemeyer, G., Barbagli, F., and Salisbury, J. (2006). Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. Robotics, IEEE Transactions on, 22(2):256 -268.
Gillespie, R. and Cutkosky, M. (1996). Stable user-specific haptic rendering of the virtual wall. In Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, volume 58, pages 397-406.
Hannaford, B. and Ryu, J.-H. (2002). Time-domain passivity control of haptic interfaces. Robotics and Automation, IEEE Transactions on, 18(1):1 -10.
Hashtrudi-Zaad, K. and Salcudean, S. (2001). Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. The International Journal of Robotics Research, 20(6):419.
Hayward, V. and Astley, O. (1996). Performance measures for haptic interfaces. In ROBOTICS RESEARCH-INTERNATIONAL SYMPOSIUM-, volume 7, pages 195-206. Citeseer.
Hayward, V. and Maclean, K. (2007). Do it yourself haptics: part i. Robotics Automation Magazine, IEEE, 14(4):88 -104.
Leskovsky, P., Harders, M., and Szeekely, G. (2006). Assessing the fidelity of haptically rendered deformable objects. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pages 19 - 25.
MacLean, K. and Hayward, V. (2008). Do it yourself haptics: Part ii [tutorial]. Robotics Automation Magazine, IEEE, 15(1):104 -119.
Mahvash, M. and Hayward, V. (2003). Passivity-based high-fidelity haptic rendering of contact. In Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, volume 3, pages 3722 - 3728 vol.3.
Mehling, J., Colgate, J., and Peshkin, M. (2005). Increasing the impedance range of a haptic display by adding electrical damping. In Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 257 - 262.
Okamura, A., Richard, C., and Cutkosky, M. (2002). Feeling is believing: Using a force-feedback joystick to teach dynamic systems. JOURNAL OF ENGINEERING EDUCATION-WASHINGTON-, 91(3):345-350.
O'Malley, M. and Goldfarb, M. (2004). The effect of virtual surface stiffness on the haptic perception of detail. Mechatronics, IEEE/ASME Transactions on, 9(2):448 -454.
Richard, C. and Cutkosky, M. (2000). The effects of real and computer generated friction on human performance in a targeting task. In Proceedings of the ASME Dynamic Systems and Control Division, volume 69, page 2.
Salisbury, K., Conti, F., and Barbagli, F. (2004). Haptic rendering: Introductory concepts. Computer Graphics and Applications, IEEE, 24(2):24-32.
Weir, D., Colgate, J., and Peshkin, M. (2008). Measuring and increasing z-width with active electrical damping. In Haptic interfaces for virtual environment and teleoperator systems, 2008. haptics 2008. symposium on, pages 169 -175.
Yasrebi, N. and Constantinescu, D. (2008). Extending the z-width of a haptic device using acceleration feedback. Haptics: Perception, Devices and Scenarios, pages 157-162.
Prerequisites / NoticeNotice:
The registration is limited to 26 students
There are 4 credit points for this lecture.
The lecture will be held in English.
The students are expected to have basic control knowledge from previous classes.
Link
151-0135-00LAdditional Case for the Focus Specialization Restricted registration - show details
Exclusive for D-MAVT Bachelor's students in Focus Specialization.
For enrollment, please contact the D-MAVT Student Administration.
W1 credit2AProfessors
AbstractIndependent studies on a defined field within the selected Focus Specialization.
ObjectiveIndependent studies on a defined field within the selected Focus Specialization.
  •  Page  1  of  1