Search result: Catalogue data in Autumn Semester 2016

Environmental Engineering Master Information
Master Studies (Programme Regulations 2016)
Majors
Major Urban Water Management
Compulsory Moudules
Ecological System Design
NumberTitleTypeECTSHoursLecturers
102-0307-01LAdvanced Environmental, Social and Economic Assessments Restricted registration - show details
Only for Environmental Engieering MSc.
O5 credits3GA. E. Braunschweig, S. Hellweg, R. Frischknecht
AbstractThis course deepens students' knowledge of environmental, economic, and social assessment methodologies and their various applications.
ObjectiveThis course has the aim of deepening students' knowledge of the environmental, economic and social assessment methodologies and their various applications.

In particular, students completing the course should have the
- ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- knowledge about the current state of the scientific discussion and new research developments
- ability to properly plan, conduct and interpret environmental assessment studies

In the course element "Implementation of Environmental and other Sustainability Goals", students will learn to
- describe key sustainability problems of the current economic system and measuring units.
- describe the management system of an organisation and illustrate how to improve its sustainability management (especially planning and controlling), based on current ISO management standards and additional frameworks.
- discuss approaches to measure environmental performance measurement of an organisation, including 'organisational LCA' (Ecobalance)
- explain the pros and cons of single score environmental assessment methods
- demonstrate life cycle costing from a sustainability viewpoint
- interpret stakeholder relations of an organisation
- (if time allows) describe sustainable supply chain management
ContentPart I (Advanced Environmental Assessments)
- Inventory database developments, transparency, data quality, data completeness, and data exchange formats, uncertainties
- Software tools (MFA, LCA)
- Allocation (multioutput processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Impact assessment of waterborne chemical emissions, sum parameters, mixture toxicity
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Subjectivity in environmental assessments
- Multicriteria Decision Analysis
- Case Studies

Part II (Implementation of Environmental and other Sustainability Goals):
- Sustainability problems of the current economic system and its measuring units;
- The structure of a management system, and elements to integrate environmental management (ISO 14001) and social management (SA8000 as well as ISO 26000), especially into strategy development, planning, controlling and communication;
- Sustainability Opportunities and Innovation
- The concept of 'Continuous Improvement'
- Life Cycle Costing, Life Cycle Management
- environmental performance measurement of an organisation, including 'organisational LCA' (Ecobalance), based on practical examples of companies and new concepts
- single score env. assessment methods (Swiss ecopoints)
- stakeholder management and sustainability oriented communication
- an intro into sustainability issues of supply chain management
Students will get small excercises related to course issues.
Lecture notesPart I: Slides and background reading material will be available on lecture homepage
Part II: Documents will be available on Ilias
LiteratureWill be made available.
Prerequisites / NoticeThis course should only be elected by students of environmental engineering with a with a Module in Ecological Systems Design. All other students should take the individual courses in Advanced Environmental Assessment and/or Implementation of Environmental and other Sustainability goals (with or without exercise and lab).

Basic knowledge of environmental assessment tools is a prerequisite for this class. Students who have not yet had classwork in this topic are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. (2016). Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).
102-0317-03LAdvanced Environmental Assessment (Computer Lab I)O1 credit1US. Pfister
AbstractDifferent tools and software used for environmental assessments, such as LCA are introduced. The students will have hands-on exercises in the computer rooms and will gain basic knowledge on how to apply the software and other resources in practice
ObjectiveBecome acquainted with various software programs for environmental assessment including Life Cycle Assessment, Environmental Risk Assessment, Probabilistic Modeling, Material Flow Analysis.
Process Engineering in Urban Water Management
NumberTitleTypeECTSHoursLecturers
102-0217-01LProcess Engineering Ib Information
Prerequisite: 102-0217-00L Process Engineering Ia (1st half of semester).
O3 credits2GE. Morgenroth
AbstractAdvanced environmental biotechnology for wastewater, waste, and also drinking water treatment. Suspended growth and biofilm based processes. Nitrogen, phosphorus, and sulfur cycle in biological processes. Advanced design and critical evaluation of treatment plants.
ObjectiveStudents should be able to evaluate existing wastewater treatment plants and future designs using basic process understanding, mathematical modeling tools, and knowledge obtained from the current literature. The students shall be capable to apply and recognize the limits of the kinetic models which have been developed to simulate these systems.
ContentAdvanced modeling of activated sludge systems
Nitrification, denitrification, and biological P elimination
Enrichment in mixed culture systems using, e.g., selectors
Biofilm kinetics and application to full scale plants
Critical review of treatment processes
Lecture notesCopies of overheads will be made available.
LiteratureThere will be a required textbook that students need to purchase (see Link for further information).
Prerequisites / NoticePrerequisit: 102-0217-00 Process Engineering Ia (in first half of semester).
System Analysis in Urban Water Management
NumberTitleTypeECTSHoursLecturers
102-0227-00LSystems Analysis and Mathematical Modeling in Urban Water Management Information O6 credits4GE. Morgenroth, M. Maurer
AbstractSystematic introduction of material balances, transport processes, kinetics, stoichiometry and conservation. Ideal reactors, residence time distribution, heterogeneous systems, dynamic response of reactors. Parameter identification, local sensitivity, error propagation, Monte Carlo simulation. Introduction to real time control (PID controllers). Extensive coding of examples in Berkeley Madonna.
ObjectiveThe goal of this course is to provide the students with an understanding and the tools to develop their own mathematical models, to plan experiments, to evaluate error propagation and to test simple process control strategies in the field of process engineering in urban water management.
ContentThe course will provide a broad introduction into the fundamentals of modeling water treatment systems. The topics are:
- Introduction into modeling and simulation
- The material balance equations, transport processes, transformation processes (kinetics, stoichiometry, conservation)
- Ideal reactors
- Hydraulic residence time distribution and modeling of real reactors
- Dynamic behavior of reactor systems
- Systems analytical tools: Sensitivity, parameter identification, error propagation, Monte Carlo simulation
- Introduction to process control (PID controller, fuzzy control)
Lecture notesCopies of overheads will be made available.
LiteratureThere will be a required textbook that students need to purchase:
Willi Gujer (2008): Systems Analysis for Water Technology. Springer-Verlag, Berlin Heidelberg
Prerequisites / NoticeThis course will be offered together with the course Process Engineering Ia. It is advantageous to follow both courses simultaneously.
102-0217-00LProcess Engineering Ia Information O3 credits2GE. Morgenroth
AbstractBiological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.
ObjectiveStudents should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.
ContentStoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization
Lecture notesCopies of overheads will be made available.
LiteratureThere will be a required textbook that students need to purchase (see Link for further information).
Prerequisites / NoticeFor detailed information on prerequisites and information needed from Systems Analysis and Mathematical Modeling the student should consult the lecture program and important information (syllabus) of Process Engineering I that can be downloaded at Link
Water Infrastructure Planning and Stormwater Management
Module will be offered from FS17 on.
Major Environmental Technologies
Compulsory Moudules
Air Quality Control
NumberTitleTypeECTSHoursLecturers
102-0377-00LAir Pollution Modeling and Chemistry Information O3 credits2GS. Henne, A. C. Gerecke, S. Reimann Bhend
AbstractAir pollutants cause negative effects on humans, wildlife and buildings. To control and reduce the impact of air pollutants, their transfer from sources to receptors needs to be known. This transfer includes transport within the atmospheric boundary layer, chemical transformation reactions and phase-transfer processes from air to liquid and solid materials (aerosols, water, ...).
ObjectiveThe students understand the fundamental principles of atmospheric transport, dispersion and chemistry of pollutants on the local to regional scale and their transfer between air and condensed phases (aerosols, water, solids). This includes the knowledge of important atmospheric reactions, sources and sinks. The obtained understanding enables the students to apply computational tools to predict the transport and transformation of chemicals at the local to regional scale.
Content- Structure of the Atmosphere
- Thermodynamics of the atmosphere
- Atmospheric stability
- Atmospheric boundary layer and turbulence
- Dispersion in the atmospheric boundary layer
- Numerical models of atmospheric dispersion
- Gas phase reaction kinetics
- Tropospheric chemistry and ozone formation
- Chemistry box models
- Volatile organic pollutants (VOCs) and semi-volatile organic pollutants (SVOCs)
- Distribution of chemicals between different phases
- Kinetics of phase transfer processes
- Computational tools to estimate volatility, distribution and phase transfer rates of organic chemicals
Lecture notesContinued updates of:
-Slides and handouts
-Home assignments and sample solutions
-R package and code for some of the home assignments
-Free software packages for estimation of properties and fate of organic chemicals
-Key journal articles as discussed during lecture
LiteratureAtmospheric chemistry
Jacobson, M.Z., 2012. Air Pollution and Global Warming: History, Science and Solutions, 405 pp., Cambridge University Press.
Finlayson-Pitts, B. J. and Pitts, J. N., 2000. Chemistry of the upper and lower atmosphere, 969 pp., Academic Press, San Diego.
Seinfeld, J. H. and Pandis, S. N., 2012. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3 ed., 1203 pp., Wiley.

Environmental organic chemistry and mass transfer
Schwarzenbach, R.P., Gschwend, P. M., Imboden, D. M., 2002. Environmental Organic Chemistry, 1328 pp, Wiley & sons, New York
Mackay D., Multimedia environmental models : the fugacity approach; Boca Raton, Fla. : Lewis Publishers; 2001; 2nd ed

Atmospheric dynamics and boundary layer
Stull, R. B., 1988. An Introduction to Boundary Layer Meteorology, 666 pp., Kluwer Academic Publishers, Dordrecht.
Etling, D., 2008. Theoretische Meteorologie Eine Einfuhrung, 3 ed., 376 pp., Springer.

Atmospheric modelling
Jacobson, M. Z., 2005. Fundamentals of atmospheric modeling, 2 ed., 813 pp., Cambridge University Press.

Introduction to R
Dalgaard, P., 2002. Introductory statistics with R, 267 pp., Springer, New York
Prerequisites / Noticestrongly recommended: 102-0635-01L Luftreinhaltung (Air Pollution Control) or similar
Process Engineering in Urban Water Management
NumberTitleTypeECTSHoursLecturers
102-0217-01LProcess Engineering Ib Information
Prerequisite: 102-0217-00L Process Engineering Ia (1st half of semester).
O3 credits2GE. Morgenroth
AbstractAdvanced environmental biotechnology for wastewater, waste, and also drinking water treatment. Suspended growth and biofilm based processes. Nitrogen, phosphorus, and sulfur cycle in biological processes. Advanced design and critical evaluation of treatment plants.
ObjectiveStudents should be able to evaluate existing wastewater treatment plants and future designs using basic process understanding, mathematical modeling tools, and knowledge obtained from the current literature. The students shall be capable to apply and recognize the limits of the kinetic models which have been developed to simulate these systems.
ContentAdvanced modeling of activated sludge systems
Nitrification, denitrification, and biological P elimination
Enrichment in mixed culture systems using, e.g., selectors
Biofilm kinetics and application to full scale plants
Critical review of treatment processes
Lecture notesCopies of overheads will be made available.
LiteratureThere will be a required textbook that students need to purchase (see Link for further information).
Prerequisites / NoticePrerequisit: 102-0217-00 Process Engineering Ia (in first half of semester).
System Analysis in Urban Water Management
NumberTitleTypeECTSHoursLecturers
102-0227-00LSystems Analysis and Mathematical Modeling in Urban Water Management Information O6 credits4GE. Morgenroth, M. Maurer
AbstractSystematic introduction of material balances, transport processes, kinetics, stoichiometry and conservation. Ideal reactors, residence time distribution, heterogeneous systems, dynamic response of reactors. Parameter identification, local sensitivity, error propagation, Monte Carlo simulation. Introduction to real time control (PID controllers). Extensive coding of examples in Berkeley Madonna.
ObjectiveThe goal of this course is to provide the students with an understanding and the tools to develop their own mathematical models, to plan experiments, to evaluate error propagation and to test simple process control strategies in the field of process engineering in urban water management.
ContentThe course will provide a broad introduction into the fundamentals of modeling water treatment systems. The topics are:
- Introduction into modeling and simulation
- The material balance equations, transport processes, transformation processes (kinetics, stoichiometry, conservation)
- Ideal reactors
- Hydraulic residence time distribution and modeling of real reactors
- Dynamic behavior of reactor systems
- Systems analytical tools: Sensitivity, parameter identification, error propagation, Monte Carlo simulation
- Introduction to process control (PID controller, fuzzy control)
Lecture notesCopies of overheads will be made available.
LiteratureThere will be a required textbook that students need to purchase:
Willi Gujer (2008): Systems Analysis for Water Technology. Springer-Verlag, Berlin Heidelberg
Prerequisites / NoticeThis course will be offered together with the course Process Engineering Ia. It is advantageous to follow both courses simultaneously.
102-0217-00LProcess Engineering Ia Information O3 credits2GE. Morgenroth
AbstractBiological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.
ObjectiveStudents should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.
ContentStoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization
Lecture notesCopies of overheads will be made available.
LiteratureThere will be a required textbook that students need to purchase (see Link for further information).
Prerequisites / NoticeFor detailed information on prerequisites and information needed from Systems Analysis and Mathematical Modeling the student should consult the lecture program and important information (syllabus) of Process Engineering I that can be downloaded at Link
Waste Management
Remark: 102-0337-00 Landfilling, Contaminated Sites and Radioactive Waste Repositories only for those students also taking module "System Analysis in Urban Water Management" as replacement of 102-0217-00 Process Engineering Ia in module "Waste Management".
NumberTitleTypeECTSHoursLecturers
102-0357-00LWaste Recycling TechnologiesO3 credits2GR. Bunge
AbstractWaste Recycling Technology (WRT) is sub-discipline of Mechanical Process Engineering. WRT is employed in production plants processing contaminated soil, construction wastes, scrap metal, recovered paper and the like. While WRT is well established in Central Europe, it is only just now catching on in emerging markets as well.
ObjectiveAt the core of this course is the separation of mixtures of solid bulk materials according to physical properties such as color, electrical conductivity, magnetism and so forth. After having taken this course, the students should have concept not only of the unit operations employed in WRT but also of how these unit operations are integrated into the flow sheets of production plants.
ContentIntroduction
Waste Recycling: Scope and objectives
Waste recycling technologies in Switzerland

Fundamentals
Properties of particles: Liberation conditions, Particle size and shape, Porosity of bulk materials
Fluid dynamics of particles: Stationary particle beds, Fluidized beds, Free settling particles
Flow sheet basics: Balancing mass flows
Standard processes: batch vs. continuous …
Assessment of separation success: Separation function; grade vs. recovery

Separation Process
Separation according to size and shape (Classification): Screening, Flow separation
Separation according to material properties (Concentration): Manual Sorting, Gravity concentration; Magnetic separation, Eddy current separation, Electrostatic separation, Sensor technology, Froth flotation
Lecture notesThe script consists of the transparencies shown during the lectures. Background material will be provided on the script-server.
LiteratureA list of recommended books will be provided.
Prerequisites / NoticeWe will approach this topic from the perspective not of theory, but of practical application. However, solid fundamentals in physics (in particular in mechanics) are strongly recommended.
102-0337-00LLandfilling, Contaminated Sites and Radioactive Waste Repositories Restricted registration - show details O3 credits2GW. Hummel, M. Plötze
AbstractPractices of landfilling and remediation of contaminated sites and disposal of radioactive waste are based on the same concepts that aim to protect the environment. The assessment of contaminants that may leach into the environment as a function of time and how to reduce the rate of their release is key to the design of chemical, technical and geological barriers.
ObjectiveUpon successful completion of this course students are able to:
- assess the risk posed to the environment of landfills, contaminated sites and radioactive waste repositories in terms of fate and transport of contaminants
- describe technologies available to minimize environmental contamination
- describe the principles in handling of contaminated sites and to propose and evaluate suitable remediation techniques
- explain the concepts that underlie radioactive waste disposal practices
ContentThis lecture course comprises of lectures with exercises and guided case studies.
- A short overview of the principles of environmental protection in waste management and how this is applied in legislation.
- A overview of the chemistry underlying the release and transport of contaminants from the landfilled/contaminated material/radioactive waste repository focusing on processes that control redox state and pH buffer capacity; mobility of heavy metals and organic compounds
- Technical barrier design and function. Clay as a barrier.
- Contaminated site remediation: Site evaluation, remediation technologies
- Concepts and safety in radioactive waste management
- Role of the geological and engineered barriers and radionuclide transport in geological media.
Lecture notesShort script plus copies of overheads
LiteratureLiterature will be made available.
Prerequisites / NoticeThis is an interdisciplinary course aimed at environmental scientists and environmental engineers.
102-0217-00LProcess Engineering Ia Information O3 credits2GE. Morgenroth
AbstractBiological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.
ObjectiveStudents should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.
ContentStoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization
Lecture notesCopies of overheads will be made available.
LiteratureThere will be a required textbook that students need to purchase (see Link for further information).
Prerequisites / NoticeFor detailed information on prerequisites and information needed from Systems Analysis and Mathematical Modeling the student should consult the lecture program and important information (syllabus) of Process Engineering I that can be downloaded at Link
Major Resource Management
Compulsory Moudules
Ecological System Design
NumberTitleTypeECTSHoursLecturers
102-0307-01LAdvanced Environmental, Social and Economic Assessments Restricted registration - show details
Only for Environmental Engieering MSc.
O5 credits3GA. E. Braunschweig, S. Hellweg, R. Frischknecht
AbstractThis course deepens students' knowledge of environmental, economic, and social assessment methodologies and their various applications.
ObjectiveThis course has the aim of deepening students' knowledge of the environmental, economic and social assessment methodologies and their various applications.

In particular, students completing the course should have the
- ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- knowledge about the current state of the scientific discussion and new research developments
- ability to properly plan, conduct and interpret environmental assessment studies

In the course element "Implementation of Environmental and other Sustainability Goals", students will learn to
- describe key sustainability problems of the current economic system and measuring units.
- describe the management system of an organisation and illustrate how to improve its sustainability management (especially planning and controlling), based on current ISO management standards and additional frameworks.
- discuss approaches to measure environmental performance measurement of an organisation, including 'organisational LCA' (Ecobalance)
- explain the pros and cons of single score environmental assessment methods
- demonstrate life cycle costing from a sustainability viewpoint
- interpret stakeholder relations of an organisation
- (if time allows) describe sustainable supply chain management
ContentPart I (Advanced Environmental Assessments)
- Inventory database developments, transparency, data quality, data completeness, and data exchange formats, uncertainties
- Software tools (MFA, LCA)
- Allocation (multioutput processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Impact assessment of waterborne chemical emissions, sum parameters, mixture toxicity
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Subjectivity in environmental assessments
- Multicriteria Decision Analysis
- Case Studies

Part II (Implementation of Environmental and other Sustainability Goals):
- Sustainability problems of the current economic system and its measuring units;
- The structure of a management system, and elements to integrate environmental management (ISO 14001) and social management (SA8000 as well as ISO 26000), especially into strategy development, planning, controlling and communication;
- Sustainability Opportunities and Innovation
- The concept of 'Continuous Improvement'
- Life Cycle Costing, Life Cycle Management
- environmental performance measurement of an organisation, including 'organisational LCA' (Ecobalance), based on practical examples of companies and new concepts
- single score env. assessment methods (Swiss ecopoints)
- stakeholder management and sustainability oriented communication
- an intro into sustainability issues of supply chain management
Students will get small excercises related to course issues.
Lecture notesPart I: Slides and background reading material will be available on lecture homepage
Part II: Documents will be available on Ilias
LiteratureWill be made available.
Prerequisites / NoticeThis course should only be elected by students of environmental engineering with a with a Module in Ecological Systems Design. All other students should take the individual courses in Advanced Environmental Assessment and/or Implementation of Environmental and other Sustainability goals (with or without exercise and lab).

Basic knowledge of environmental assessment tools is a prerequisite for this class. Students who have not yet had classwork in this topic are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. (2016). Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).
102-0317-03LAdvanced Environmental Assessment (Computer Lab I)O1 credit1US. Pfister
AbstractDifferent tools and software used for environmental assessments, such as LCA are introduced. The students will have hands-on exercises in the computer rooms and will gain basic knowledge on how to apply the software and other resources in practice
ObjectiveBecome acquainted with various software programs for environmental assessment including Life Cycle Assessment, Environmental Risk Assessment, Probabilistic Modeling, Material Flow Analysis.
Groundwater
Module will be offered from FS17 on.
Waste Management
Remark: 102-0337-00 Landfilling, Contaminated Sites and Radioactive Waste Repositories only for those students also taking module "Water Infrastructure Planning and Stormwater Management" as replacement of 102-0217-00 Process Engineering Ia in module "Waste Management".
NumberTitleTypeECTSHoursLecturers
102-0357-00LWaste Recycling TechnologiesO3 credits2GR. Bunge
AbstractWaste Recycling Technology (WRT) is sub-discipline of Mechanical Process Engineering. WRT is employed in production plants processing contaminated soil, construction wastes, scrap metal, recovered paper and the like. While WRT is well established in Central Europe, it is only just now catching on in emerging markets as well.
ObjectiveAt the core of this course is the separation of mixtures of solid bulk materials according to physical properties such as color, electrical conductivity, magnetism and so forth. After having taken this course, the students should have concept not only of the unit operations employed in WRT but also of how these unit operations are integrated into the flow sheets of production plants.
ContentIntroduction
Waste Recycling: Scope and objectives
Waste recycling technologies in Switzerland

Fundamentals
Properties of particles: Liberation conditions, Particle size and shape, Porosity of bulk materials
Fluid dynamics of particles: Stationary particle beds, Fluidized beds, Free settling particles
Flow sheet basics: Balancing mass flows
Standard processes: batch vs. continuous …
Assessment of separation success: Separation function; grade vs. recovery

Separation Process
Separation according to size and shape (Classification): Screening, Flow separation
Separation according to material properties (Concentration): Manual Sorting, Gravity concentration; Magnetic separation, Eddy current separation, Electrostatic separation, Sensor technology, Froth flotation
Lecture notesThe script consists of the transparencies shown during the lectures. Background material will be provided on the script-server.
LiteratureA list of recommended books will be provided.
Prerequisites / NoticeWe will approach this topic from the perspective not of theory, but of practical application. However, solid fundamentals in physics (in particular in mechanics) are strongly recommended.
102-0337-00LLandfilling, Contaminated Sites and Radioactive Waste Repositories Restricted registration - show details O3 credits2GW. Hummel, M. Plötze
AbstractPractices of landfilling and remediation of contaminated sites and disposal of radioactive waste are based on the same concepts that aim to protect the environment. The assessment of contaminants that may leach into the environment as a function of time and how to reduce the rate of their release is key to the design of chemical, technical and geological barriers.
ObjectiveUpon successful completion of this course students are able to:
- assess the risk posed to the environment of landfills, contaminated sites and radioactive waste repositories in terms of fate and transport of contaminants
- describe technologies available to minimize environmental contamination
- describe the principles in handling of contaminated sites and to propose and evaluate suitable remediation techniques
- explain the concepts that underlie radioactive waste disposal practices
ContentThis lecture course comprises of lectures with exercises and guided case studies.
- A short overview of the principles of environmental protection in waste management and how this is applied in legislation.
- A overview of the chemistry underlying the release and transport of contaminants from the landfilled/contaminated material/radioactive waste repository focusing on processes that control redox state and pH buffer capacity; mobility of heavy metals and organic compounds
- Technical barrier design and function. Clay as a barrier.
- Contaminated site remediation: Site evaluation, remediation technologies
- Concepts and safety in radioactive waste management
- Role of the geological and engineered barriers and radionuclide transport in geological media.
Lecture notesShort script plus copies of overheads
LiteratureLiterature will be made available.
Prerequisites / NoticeThis is an interdisciplinary course aimed at environmental scientists and environmental engineers.
102-0217-00LProcess Engineering Ia Information O3 credits2GE. Morgenroth
AbstractBiological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.
ObjectiveStudents should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.
ContentStoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization
Lecture notesCopies of overheads will be made available.
LiteratureThere will be a required textbook that students need to purchase (see Link for further information).
Prerequisites / NoticeFor detailed information on prerequisites and information needed from Systems Analysis and Mathematical Modeling the student should consult the lecture program and important information (syllabus) of Process Engineering I that can be downloaded at Link
Water Resources Management
NumberTitleTypeECTSHoursLecturers
102-0237-00LHydrology IIO3 credits2GP. Burlando, S. Fatichi
AbstractThe course presents advanced hydrological analyses of rainfall-runoff processes. The course is given in English.
ObjectiveTools for hydrological modelling are discussed at the event and continuous scale. The focus is on the description of physical processes and their modelisation with practical examples.
ContentMonitoring of hydrological systems (point and space monitoring, remote sensing). The use of GIS in hydrology (practical applications). General concepts of watershed modelling. Infiltration. IUH models. Event based rainfall-runoff modelling. Continuous rainfall-runoff models (components and prrocesses). Example of modelling with the PRMS model. Calibration and validation of models. Flood routing (unsteady flow, hydrologic routing, examples). The course contains an extensive semester project.
Lecture notesParts of the script for "Hydrology I" are used. Also available are the overhead transparencies used in the lectures. The semester project consists of a two part instruction manual.
LiteratureAdditional literature is presented during the course.
Major Water Resources Management
Compulsory Moudules
Flow and Transport
NumberTitleTypeECTSHoursLecturers
101-0267-01LNumerical Hydraulics Information O3 credits2GM. Holzner
AbstractIn the course Numerical Hydraulics the basics of numerical modelling of flows are presented.
ObjectiveThe goal of the course is to develop the understanding of the students for numerical simulation of flows to an extent that they can later use commercial software in a responsible and critical way.
ContentThe basic equations are derived from first principles. Possible simplifications relevant for practical problems are shown and their applicability is discussed. Using the example of non-steady state pipe flow numerical methods such as the method of characteristics and finite difference methods are introduced. The finite volume method as well as the method of characteristics are used for the solution of the shallow water equations. Special aspects such as wave propagation and turbulence modelling are also treated.

All methods discussed are applied pratically in exercises. This is done using programs in MATLAB which partially are programmed by the students themselves. Further, some generelly available softwares such as Hydraulic Systems and HEC RAS for non-steady flows are used.
Lecture notesLecture notes, powerpoints shown in the lecture and programs used can be downloaded. They are also available in German.
LiteratureGiven in lecture
Landscape
NumberTitleTypeECTSHoursLecturers
103-0347-00LLandscape Planning and Environmental Systems Restricted registration - show details
Only for master students, otherwise a special permisson by the lecturers is required.
O3 credits2VA. Grêt-Regamey
AbstractIn the course, methods for the identification and measurement of landscape characteristics, as well as measures and implementation of landscape planning are taught. Landscape planning is put into the context of the environmental systems (soil, water, air, climate, flora and fauna) and discussed with regard to socio-political questions of the future.
ObjectiveThe aims of this course are:
1) To illustrate the concept of landscape planning, the economic relevance of landscape and nature in the context of the environmental systems (soil, water, air, climate, flora and fauna).
2) To show landscape planning as an integral information system for the coordination of different instruments by illustrating the aims, methods, instruments and their functions in landscape planning.
3) To show the importance of ecosystem services.
4) To point out basic information about nature and landscape: Analysis and assessment of the complex interactions between landscape elements, effects of existing and foreseeable utilization of space (nature goods and services and landscape functions).
5) To identify and measure the characteristics of landscape.
6) Learn how to use the instrument of GIS appropriately in landscape planning.
ContentIn this course, the following topics are discussed:
- Definition of the concept of landscape
- Landscape change
- Landscape planning
- Methods, instruments and aims of landscape planning (politics)
- Socio-political questions of the future
- Environmental systems, IUCN Red List, ecological connectivity
- Urban landscape services
- Practice of landscape planning
- Use of GIS in landscape planning
Lecture notesNo script. The documentation, consisting of presentation slides are partly handed out and are provided for download on the PLUS website.
Prerequisites / NoticeThe contents of the course will be illustrated in the associated lecture 103-0347-01 U (Landscape Planning and Environmental Systems (GIS Exercises)). An combination of courses is recommended.
  •  Page  1  of  3 Next page Last page     All