Suchergebnis: Katalogdaten im Frühjahrssemester 2017

Chemie- und Bioingenieurwissenschaften Master Information
Kernfächer
Bio-Engineering
NummerTitelTypECTSUmfangDozierende
529-0835-00LBioprocess ModelingW+7 KP3GR. Gunawan
KurzbeschreibungIntroduction to state-of-the-art modeling and computational approaches to study, analyze and optimize biological and biotechnological processes.
LernzielIn this course, students will study various techniques to build mathematical models for applications in the bio-production of chemical and pharmaceutical products. The modeling topics will cover different length and time scales, from single cells to cell population to bioreactors. In addition, students will also learn numerical and statistical tools for parameter estimation and systems analysis of bioprocesses. Finally, students will apply the concepts learned in the course to a semester-long modeling project.
InhaltSpecific topics in the course include, but not limited to:
1. Overview of Bioprocess Modeling
2. Single cell and cell population modelling
a. Review of cellular processes
b. Review of common types of mathematical models
c. Modelling of gene, signalling and metabolic networks
3. Bioreactor modelling
a. Structured vs. Unstructured Models
b. Bioreactor models
4. Multi-scale and Hybrid models
5. Numerical Methods for Model Solution
6. Parameter Estimation and Model Identification
7. Model Analysis (Sensitivity and Stability Analysis)
SkriptLecture notes will be provided
Polymere
NummerTitelTypECTSUmfangDozierende
529-0610-00LInterface Engineering of MaterialsW+7 KP4GC.‑J. Shih
KurzbeschreibungAdvances in interface engineering, the control of molecular and charge behaviour between two phases, are driving the development of new technologies across many industrial and scientific fields. This course will review the fundamental engineering concepts required to analyse and solve problems at liquid-solid and solid-solid interfaces.
LernzielIntroduce the students to the engineering principles of energy, mass, and electron transport at the liquid-solid and solid-solid interfaces, for the applications in materials processing and electronic devices.
InhaltPART A: Solid-Liquid Interface
Chapter 1: Interface Phenomena
Chapter 2: Crystallization and Crystal Growth
Chapter 3: Electrical Double Layer
Chapter 4: Electroosmotic Flow
PART B: Solid-Solid Interface
Chapter 5: Fundamentals of Electronic Materials
Chapter 6: Junction Characteristics
Chapter 7: Solar Cells and Light Emitting Diodes
Chapter 8: Field-Effect Transistors
LiteraturHiemenz P.C., Rajagopalan R., Principles of Colloid and Surface Chemistry, 3rd Edition.
Deen W.M., Analysis of Transport Phenomena, 2nd Edition.
Sze S.M. and Ng K.K., Physics of Semiconductor Devices, 3rd Edition.
Voraussetzungen / BesonderesEngineering Mathematics, Transport Phenomena, Undergraduate Physical Chemistry
Wahlfächer
NummerTitelTypECTSUmfangDozierende
551-0342-00LMetabolomics Belegung eingeschränkt - Details anzeigen
Number of participants limited to 15.

The enrolment is done by the D-BIOL study administration.
W6 KP7GN. Zamboni, U. Sauer
KurzbeschreibungThe course covers all basic aspects of metabolome measurements, from sample sampling to mass spectrometry and data analysis. Participants work in groups and independently perform and interpret metabolomic experiments.
LernzielPerforming and reporting a metabolomic experiment, understanding pro and cons of mass spectrometry based metabolomics. Knowledge of workflows and tools to assist experiment interpretation, and metabolite identification.
InhaltBasics of metabolomics: workflows, sample preparation, targeted and untargeted mass spectrometry, instrumentation, separation techniques (GC, LC, CE), metabolite identification, data interpretation and integration, normalization, QCs, maintenance.

Soft skills to be trained: project planning, presentation, reporting, independent working style, team work.
529-0941-00LIntroduction to Macromolecular ChemistryW4 KP3GA. D. Schlüter
KurzbeschreibungBasic definitions, types of polyreactions, constitution of homo- and copolymers, networks, configurative and conformative aspects, contour length, coil formation, mobility, glass temperature, rubber elasticity, molecular weight distribution, energetics of and examples for polyreactions.
LernzielUnderstanding the significance of molecular size, constitution, configuration and conformation of synthetic and natural macromolecules for their specific physical and chemical properties.
InhaltThis introductory course on macromolecular chemistry discusses definitions, introduces types of polyreactions, and compares chain and step-growth polymerizations. It also treats the constitution of polymers, homo- and copolymers, networks, configuration and conformation of polymers. Topics of interest are contour length, coil formation, the mobility in polymers, glass temperature, rubber elasticity, molecular weight distribution, energetics of polyreactions, and examples for polyreactions (polyadditions, polycondensations, polymerizations). Selected polymerization mechanisms and procedures are discussed whenever appropriate throughout the course. Some methods of molecular weight determination are introduced.
SkriptCourse materials (consisting of personal notes and distributed paper copies) are sufficient for exam preparation.
Voraussetzungen / BesonderesThe course will be taught in English. Complicated expressions will also be given in German. Questions are welcome in English or German. The written examination will be in English, answers in German are acceptable. A basic chemistry knowledge is required.

PhD students who need recognized credit points are required to pass the written exam.
551-0324-00LSystems BiologyW6 KP4VR. Aebersold, B. Christen, M. Claassen, E. Hafen, U. Sauer
KurzbeschreibungIntroduction to experimental and computational methods of systems biology. By using baker’s yeast as a thread through the series, we focus on global methods for analysis of and interference with biological functions. Illustrative applications to other organisms will highlight medical and biotechnological aspects.
Lernziel- obtain an overview of global analytical methods
- obtain an overview of computational methods in systems biology
- understand the concepts of systems biology
InhaltOverview of global analytical methods (e.g. DNA arrays, proteomics, metabolomics, fluxes etc), global interference methods (siRNA, mutant libraries, synthetic lethality etc.) and imaging methods. Introduction to mass spectrometry and proteomics. Concepts of metabolism in microbes and higher cells. Systems biology of developmental processes. Concepts of mathematical modeling and applications of computational systems biology.
Skriptno script
LiteraturThe course is not taught by a particular book, but some books are suggested for further reading:

- Systems biology in Practice by Klipp, Herwig, Kowald, Wierling und Lehrach. Wiley-VCH 2005
227-0390-00LElements of MicroscopyW4 KP3GM. Stampanoni, G. Csúcs, A. Sologubenko
KurzbeschreibungThe lecture reviews the basics of microscopy by discussing wave propagation, diffraction phenomena and aberrations. It gives the basics of light microscopy, introducing fluorescence, wide-field, confocal and multiphoton imaging. It further covers 3D electron microscopy and 3D X-ray tomographic micro and nanoimaging.
LernzielSolid introduction to the basics of microscopy, either with visible light, electrons or X-rays.
InhaltIt would be impossible to imagine any scientific activities without the help of microscopy. Nowadays, scientists can count on very powerful instruments that allow investigating sample down to the atomic level.
The lecture includes a general introduction to the principles of microscopy, from wave physics to image formation. It provides the physical and engineering basics to understand visible light, electron and X-ray microscopy.
During selected exercises in the lab, several sophisticated instrument will be explained and their capabilities demonstrated.
LiteraturAvailable Online.
529-0191-01LRenewable Energy Technologies II, Energy Storage and Conversion
Die Vorlesungen Renewable Energy Technologies I (529-0193-00L) und Renewable Energy Technologies II (529-0191-01L) können unabhängig voneinander besucht werden.
W4 KP3GT. Schmidt
KurzbeschreibungGlobal & Swiss energy system. Storage: Pumped water, flywheels, compressed air. Hydrogen as energy carrier; electrolysis; power-to-gas. Fuel cells: from fundamentals to systems; Fuel cell vehicles; electrochemical storage in batteries. supercapacitors and redox flow cells; electromobility. The main focus of the lecture will be on electrochemical energy conversion and storage.
LernzielStudents will recognize the importance of energy storage in an industrial energy system, specifically in the context of a future system based on renewable sources. The efficient generation of electricity from hydrogen in fuel cells, and the efficient energy storage in batteries and supercapacitors will be introduced. Students will get a detailed insight into electrochemical energy conversion and storage, which will play an important role in future energy systems.
Literatur- Tester, J.W., Drake, E.M., Golay, M.W., Driscoll, M.J., Peters, W.A.: Sustainable Energy - Choosing Among Options (MIT Press, 2005).
- C.H. Hamann, A. Hamnett, W. Vielstich; Electrochemistry, Wiley-VCH (2007).
- K. Krischer, K. Schönleber: Physiccs of Energy Conversion, De Gruyter (2015)
- R. Schlögl, Chemical Energy Storage, De Gruyter (2013)
Voraussetzungen / BesonderesPlease note that this is a 3 hours/week lecture including exercises, i.e., exercises will be included and are not separated. It is therefore highly recommended to attend the full 3 hours every week.

Participating students are required to have basic knowlegde of chemistry and thermodynamics.
529-0835-00LBioprocess ModelingW7 KP3GR. Gunawan
KurzbeschreibungIntroduction to state-of-the-art modeling and computational approaches to study, analyze and optimize biological and biotechnological processes.
LernzielIn this course, students will study various techniques to build mathematical models for applications in the bio-production of chemical and pharmaceutical products. The modeling topics will cover different length and time scales, from single cells to cell population to bioreactors. In addition, students will also learn numerical and statistical tools for parameter estimation and systems analysis of bioprocesses. Finally, students will apply the concepts learned in the course to a semester-long modeling project.
InhaltSpecific topics in the course include, but not limited to:
1. Overview of Bioprocess Modeling
2. Single cell and cell population modelling
a. Review of cellular processes
b. Review of common types of mathematical models
c. Modelling of gene, signalling and metabolic networks
3. Bioreactor modelling
a. Structured vs. Unstructured Models
b. Bioreactor models
4. Multi-scale and Hybrid models
5. Numerical Methods for Model Solution
6. Parameter Estimation and Model Identification
7. Model Analysis (Sensitivity and Stability Analysis)
SkriptLecture notes will be provided
529-0610-00LInterface Engineering of MaterialsW+7 KP4GC.‑J. Shih
KurzbeschreibungAdvances in interface engineering, the control of molecular and charge behaviour between two phases, are driving the development of new technologies across many industrial and scientific fields. This course will review the fundamental engineering concepts required to analyse and solve problems at liquid-solid and solid-solid interfaces.
LernzielIntroduce the students to the engineering principles of energy, mass, and electron transport at the liquid-solid and solid-solid interfaces, for the applications in materials processing and electronic devices.
InhaltPART A: Solid-Liquid Interface
Chapter 1: Interface Phenomena
Chapter 2: Crystallization and Crystal Growth
Chapter 3: Electrical Double Layer
Chapter 4: Electroosmotic Flow
PART B: Solid-Solid Interface
Chapter 5: Fundamentals of Electronic Materials
Chapter 6: Junction Characteristics
Chapter 7: Solar Cells and Light Emitting Diodes
Chapter 8: Field-Effect Transistors
LiteraturHiemenz P.C., Rajagopalan R., Principles of Colloid and Surface Chemistry, 3rd Edition.
Deen W.M., Analysis of Transport Phenomena, 2nd Edition.
Sze S.M. and Ng K.K., Physics of Semiconductor Devices, 3rd Edition.
Voraussetzungen / BesonderesEngineering Mathematics, Transport Phenomena, Undergraduate Physical Chemistry
Praktikum, Projektarbeit und Fallstudie
NummerTitelTypECTSUmfangDozierende
529-0300-00LResearch ProjectO8 KP8AProfessor/innen
KurzbeschreibungIn a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student.
LernzielEinführung in die experimentellen Arbeitsmethoden der Chemieingenieurwissenschaften in einer Forschungsgruppe. Kritische Analyse und Präsentation der Resultate in einem wissenschaftlichen Bericht.
InhaltDieses Projekt wird vorzugsweise während der Frühlingsferien vor dem sechsten Semester als Blockveranstaltung durchgeführt. Der/die Teilnehmer darf sein Thema aus den vorgeschlagenen Projekten auswählen. Schwergewicht wird auf das Erlernen von experimentellen Methoden und deren Auswertung und Interpretation gelegt. Resultate werden in einem Bericht zusammengefasst und kritisch beurteilt.
GESS Wissenschaft im Kontext
» Empfehlungen aus dem Bereich Wissenschaft im Kontext (Typ B) für das D-CHAB
» siehe Studiengang Wissenschaft im Kontext: Typ A: Förderung allgemeiner Reflexionsfähigkeiten
» siehe Studiengang Wissenschaft im Kontext: Sprachkurse ETH/UZH
Master-Arbeit
NummerTitelTypECTSUmfangDozierende
529-0600-00LMaster's Thesis
Zur Master-Arbeit wird nur zugelassen, wer:
a. das Bachelor-Studium erfolgreich abgeschlossen hat;
b. allfällige Auflagen für die Zulassung zum Master-Studiengang erfüllt hat.

Dauer der Masterarbeit 16 Wochen.
O20 KP43DProfessor/innen
KurzbeschreibungIn the Master thesis students prove their ability to independent, structured and scientific working. The Master thesis is carried out in a research group of the Department of Chemistry and Applied Biosciences, usually in the Institute of Chemical and Bioengineering, as chosen by the student.
LernzielIn the Master Thesis students prove their ability to independent, structured and scientific working.
Auflagen-Lerneinheiten
Das untenstehende Lehrangebot gilt nur für MSc Studierende mit Zulassungsauflagen.
NummerTitelTypECTSUmfangDozierende
551-0103-AALFundamentals of Biology II: Cell Biology
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
E-5 KP11RU. Kutay, Y. Barral, E. Hafen, G. Schertler, U. Suter, S. Werner
KurzbeschreibungThe goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.
LernzielThe goal of this course is to provide students with a wide general understanding cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.
InhaltThe focus is animal cells and the development of multicellular organisms with a clear emphasis on the molecular basis of cellular structures and phenomena. The topics include biological membranes, the cytoskeleton, protein sorting, energy metabolism, cell cycle and division, viruses, extracellular matrix, cell signaling, embryonic development and cancer research.
LiteraturAlberts et al. 'Molecular Biology of the Cell' 6th edition, 2014, ISBN 9780815344322 (hard cover) and ISBN 9780815345244 (paperback).

Topic/Lecturer/Chapter/Pages:

Analyzing cells & molecules / Gebhard Schertler/8/ 439-463;
Membrane structure / Gebhard Schertler/ 10/ 565-595;
Compartments and Sorting/ Ulrike Kutay/12+14+6/641-694/755-758/782-783/315-320/325 -333/Table 6-2/Figure6-20, 6-21, 6-32, 6-34;
Intracellular Membrane Traffic/ Ulrike Kutay/13/695-752;
The Cytoskeleton/ Ulrike Kutay/ 16/889 - 948 (only the essentials);
Membrane Transport of Small Molecules and the Electrical Properties of Membranes /Sabine Werner/11/597 - 633;
Mechanisms of Cell Communication / Sabine Werner/15/813-876;
Cancer/ Sabine Werner/20/1091-1141;
Cell Junctions and Extracellular Matrix/Ueli Suter / 1035-1081;
Stem Cells and Tissue Renewal/Ueli Suter /1217-1262;
Development of Multicellular organisms/ Ernst Hafen/ 21/ 1145-1179 /1184-1198/1198-1213;
Cell Migration/Joao Matos/951-960;
Cell Death/Joao Matos/1021-1032;
Cell Cycle/chromosome segregation/Cell division/Meiosis/Joao Matos/ 963-1018.
Voraussetzungen / Besonderesnone
551-0016-AALBiology II
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
E-2 KP4RM. Stoffel, E. Hafen
KurzbeschreibungThe lecture course Biology II is a basic introductory course into biology for students who need to pass this course for admission to their MSc curriculum.
LernzielThe objective of the lecture course Biology II is the understanding of form, function, and development of animals and of the basic underlying mechanisms.
InhaltThe following numbers of chapters refer to the text-book "Biology" (Campbell & Reece, 10th edition, 2015) on which the course is based. Chapters 1-4 are a basic prerequisite. The sections "Structure of the Cell" (Chapters 5-10, 12, 17) and "General Genetics" (Chapters 13-16, 18, 46) are covered by the lecture Biology I.

1. Genomes, DNA Technology, Genetic Basis of Development

Chapter 19: Eukaryotic Genomes: Organization, Regulation, and Evolution
Chapter 20: DNA Technology and Genomics
Chapter 21: The Genetic Basis of Development

2. Form, Function, and Development of Animals I

Chapter 40: Basic Principles of Animal Form and Function
Chapter 41: Animal Nutrition
Chapter 44: Osmoregulation and Excretion
Chapter 47: Animal Development

3. Form, Function, and Develeopment of Animals II

Chapter 42: Circulation and Gas Exchange
Chapter 43: The Immune System
Chapter 45: Hormones and the Endocrine System
Chapter 48: Nervous Systems
Chapter 49: Sensory and Motor Mechanisms
LiteraturThe following text-book is the basis for the courses Biology I and II:

Biology, Campbell and Rees, 10th Edition, 2015, Pearson/Benjamin Cummings, ISBN 978-3-8632-6725-4
Voraussetzungen / BesonderesPrerequisite: Lecture course Biology I of winter semester
529-0051-AALAnalytical Chemistry I
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
E-3 KP6RD. Günther, R. Zenobi
KurzbeschreibungIntroduction into the most important spectroscopical methods and their applications to gain structural information.
LernzielKnowledge about the necessary theoretical background of spectroscopical methods and their practical applications
InhaltApplication oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods:
Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements.
NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling.
IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy.
UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) und optical rotation dispersion (ORD).
Atomic absorption, emission, and X-ray fluorescence spectroscopy: Basics, sample preparation.
SkriptScript will be provided for factory costs.
Literatur- R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998;
- D. A. Skoog und J. J. Leary, Instrumentelle Analytik, Springer, Heidelberg, 1996;
- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995
- E. Pretsch, P. Bühlmann, C. Affolter, M. Badertscher, Spektroskopische Daten zur Strukturaufklärung organischer verbindungen, 4. Auflage, Springer, Berlin/Heidelberg, 2001-
Kläntschi N., Lienemann P., Richner P., Vonmont H: Elementanalytik. Instrumenteller Nachweis und Bestimmung von Elementen und deren Verbindungen. Spektrum Analytik, 1996, Hardcover, 339 S., ISBN 3-86025-134-1.
Voraussetzungen / BesonderesExcercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounts" (4th semester) is recommended.
551-0013-AALBiochemistry
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
E-2 KP4RR. Glockshuber
KurzbeschreibungGegenstand der Vorlesung ist die Einführung in die molekularen Grundlagen der Biologie für angehende Masterstudierende, die dieses Kurs als Zulassungsvoraussetzung erfolgreich absolvieren müssen
LernzielZiel der Vorlesung ist die Vermittlung des molekularen Aufbaus der Zelle, der Grundlagen des Stoffwechsels und eines Überblicks über molekulare Genetik
InhaltDie folgenden Kapitelnummern beziehen sich auf das Lehrbuch Biochemistry (Berg, Tymoczko, Stryer, 7th edition, 2012, Freeman & Co, New York):

Chapter 1: The molecular design of life
Chapter 2: Protein composition and structure
Chapter 3: Exploring proteins and proteomes
Chapter 4: DNA, RNA and the flow of information
Chapter 5: Exploring Genes and Genomes
Chapter 7: Hemoglobin
Chapter 8: Enzymes and the basic concepts of catalysis
Chapter 11: Carbohydrates
Chapter 12: Lipids and cell membranes
Chapter 15: Metabolism: Basic concepts and design
LiteraturBiochemistry (Berg, Tymoczko, Stryer, 7th edition, 2012, Freeman & Co, New York)
  •  Seite  1  von  1