Search result: Catalogue data in Spring Semester 2017

Biology (General Courses) Information
Complementary Courses
In certain cases, credit points may be awardable (prior agreement of the Dept. of Biology required).
NumberTitleTypeECTSHoursLecturers
551-0512-00LCurrent Topics in Molecular and Cellular Neurobiology Restricted registration - show details
Number of participants limited to 8
Z Dr2 credits1SU. Suter
AbstractThe course is a literature seminar or "journal club". Each Friday a student, or a member of the Suter Lab in the Institute of Molecular Health Sciences, will present a paper from the recent literature.
ObjectiveThe course introduces you to recent developments in the fields of cellular and molecular neurobiology. It also supports you to develop your skills in critically reading the scientific literature. You should be able to grasp what the authors wanted to learn e.g. their goals, why the authors chose the experimental approach they used, the strengths and weaknesses of the experiments and the data presented, and how the work fits into the wider literature in the field. You will present one paper yourself, which provides you with practice in public speaking.
ContentYou will present one paper yourself. Give an introduction to the field of the paper, then show and comment on the main results (all the papers we present are available online, so you can show original figures with a beamer). Finish with a summary of the main points and a discussion of their significance.
You are expected to take part in the discussion and to ask questions. To prepare for this you should read all the papers beforehand (they will be announced a week in advance of the presentation).
Lecture notesPresentations will be made available after the seminars.
LiteratureWe cover a range of themes related to development and neurobiology. Before starting your preparations, you are required to check with Laura Montani (Link), who helps you with finding an appropriate paper.
Prerequisites / NoticeYou must attend at least 80% of the journal clubs, and give a presentation of your own. At the end of the semester there will be a 30 minute oral exam on the material presented during the semester. The grade will be based on the exam (45%), your presentation (45%), and a contribution based on your active participation in discussion of other presentations (10%).
551-0530-00LRepair, Recombination, ReplicationZ Dr0 credits1KJ. Fernandes de Matos
AbstractSeveral research groups from University, ETH, Basel, Bern and Konstanz meet once per month and present their work related to DNA-repair, recombination, replication, and cancer.
ObjectiveDiscussion of current topics in DNA-repair, recombination, replication, and cancer.
ContentDiscussion of current topics in DNA-repair, recombination, replication, and cancer.
Lecture notesno script
551-1109-00LSeminars in Microbiology Information Z Dr0 credits2KM. Aebi, W.‑D. Hardt, J. Piel, J. Vorholt-Zambelli
AbstractSeminars by invited speakers covering selected microbiology themes.
ObjectiveDiscussion of selected microbiology themes presented by invited speakers.
551-1620-00LMolecular Biology, BiophysicsZ Dr1 credit1KR. Glockshuber, F. Allain, N. Ban, K. Locher, E. Weber-Ban, K. Wüthrich
AbstractThe course consists of a series of research seminars on Structural Biology and Biophysics, given by both scientists of the National Center of Competence in Research (NCCR) in Structural Biology and external speakers.
ObjectiveThe goal of this course is to provide doctoral and postdoctoral students with a broad overview on the most recent developments in biochemistry, structural biology and biophysics.
Prerequisites / NoticeInformation on the individual seminars is provided on the following websites:
Link
Link
376-1614-00LPrinciples in Tissue EngineeringZ Dr3 credits2VK. Maniura, J. Möller, M. Zenobi-Wong
AbstractFundamentals in blood coagulation; thrombosis, blood rheology, immune system, inflammation, foreign body reaction on the molecular level and the entire body are discussed. Applications of biomaterials for tissue engineering in different tissues are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed.
ObjectiveUnderstanding of molecular aspects for the application of biodegradable and biocompatible Materials. Fundamentals of tissue reactions (eg. immune responses) against implants and possible clinical consequences will be discussed.
ContentThis class continues with applications of biomaterials and devices introduced in Biocompatible Materials I. Fundamentals in blood coagulation; thrombosis, blood rheology; immune system, inflammation, foreign body reaction on the level of the entire body and on the molecular level are introduced. Applications of biomaterials for tissue engineering in the vascular system, skeletal muscle, heart muscle, tendons and ligaments, bone, teeth, nerve and brain, and drug delivery systems are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed.
Lecture notesHandouts provided during the classes and references therin.
LiteratureThe molecular Biology of the Cell, Alberts et al., 5th Edition, 2009.
Principles in Tissue Engineering, Langer et al., 2nd Edition, 2002
401-0620-00LStatistical ConsultingZ Dr0 credits0.1KM. Kalisch, L. Meier
AbstractThe Statistical Consulting service is open for all members of ETH, including students, and partly also to other persons.
ObjectiveAdvice for analyzing data by statistical methods.
ContentStudents and researchers can get advice for analyzing scientific data, often for a thesis.
We highly recommend to contact the consulting service when planning a project, not only towards the end of analyzing the resulting data!
Prerequisites / NoticeThis is not a course, but a consulting service. There are no exams nor credits.

Contact: Link Tel. 044 632 2223 or 044 632 34 30

Requirements: Knowledge of the basic concepts of statistics is desirable.
401-5640-00LZüKoSt: Seminar on Applied Statistics Information Z Dr0 credits1KM. Kalisch, P. L. Bühlmann, R. Furrer, L. Held, T. Hothorn, M. H. Maathuis, M. Mächler, L. Meier, N. Meinshausen, M. Robinson, C. Strobl, S. van de Geer
Abstract5 to 6 talks on applied statistics.
ObjectiveKennenlernen von statistischen Methoden in ihrer Anwendung in verschiedenen Gebieten, besonders in Naturwissenschaft, Technik und Medizin.
ContentIn 5-6 Einzelvorträgen pro Semester werden Methoden der Statistik einzeln oder überblicksartig vorgestellt, oder es werden Probleme und Problemtypen aus einzelnen Anwendungsgebieten besprochen.
3 bis 4 der Vorträge stehen in der Regel unter einem Semesterthema.
Lecture notesBei manchen Vorträgen werden Unterlagen verteilt.
Eine Zusammenfassung ist kurz vor den Vorträgen im Internet unter Link abrufbar.
Ankündigunen der Vorträge werden auf Wunsch zugesandt.
Prerequisites / NoticeDies ist keine Vorlesung. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben.
Nach besonderem Programm. Koordinator M. Kalisch, Tel. 044 632 3435
Lehrsprache ist Englisch oder Deutsch je nach ReferentIn.
Course language is English or German and may depend on the speaker.
227-1034-00LComputational Vision (University of Zurich) Information
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: INI402

Mind the enrolment deadlines at UZH:
Link
Z Dr6 credits2V + 1UD. Kiper, K. A. Martin
AbstractThis course focuses on neural computations that underlie visual perception. We study how visual signals are processed in the retina, LGN and visual cortex. We study the morpholgy and functional architecture of cortical circuits responsible for pattern, motion, color, and three-dimensional vision.
ObjectiveThis course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed.
The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will
be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered.
ContentThis course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed.
The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will
be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered.
LiteratureBooks: (recommended references, not required)
1. An Introduction to Natural Computation, D. Ballard (Bradford Books, MIT Press) 1997.
2. The Handbook of Brain Theorie and Neural Networks, M. Arbib (editor), (MIT Press) 1995.
376-1796-00LAdvanced Course in Neurobiology II (University of Zurich) Information
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: SPV0Y009

Mind the enrolment deadlines at UZH:
Link
Z Dr2 credits2VJ.‑M. Fritschy, University lecturers
AbstractThe goal of this Advanced Course in Neurobiology is to provide students with a broader knowledge in several important areas of neurobiology. The course consists of four parts: Part I deals with various topics in developmental neurobiology. Part II is devoted to aspects of signal transduction. Part III focuses on synaptic transmission. Part IV gives deeper insights into systems neuroscience.
ObjectiveThis credit point course is designed for doctoral students who have successfully completed the Introductory Course in Neuroscience at the Neuroscience Center Zürich. The goal is to provide students with a broader and deeper knowledge in several important areas of neurobiology.
Prerequisites / NoticeFür Doktorierende des Zentrums für Neurowissenschaften Zürich. Nicht für Master-Studierende geeignet.
551-1405-00LElectron Cryomicroscopy SeminarZ Dr0 credits0.5SM. Pilhofer, further lecturers
AbstractIntergroup seminar for scientists and students interested in electron cryomicroscopy
ObjectiveThe goal of the seminar is to provide an exchange forum for anyone interested in electron cryomicroscopy (tomography and single particle).
The first ~10 minutes are used for exchange on instrument status and technical issues, followed by a ~30 min presentation and discussion of a specific project.
The seminar can also be used to discuss current literature and report from conferences.
Prerequisites / NoticePresented project data are confidential. Sign-up for seminar announcements by emailing Link.
551-0509-00LCurrent Immunological Research in ZürichE-0 credits1KR. Spörri, M. Detmar, C. Halin Winter, W.‑D. Hardt, M. Kopf, S. R. Leibundgut, A. Oxenius, University lecturers
AbstractThis monthly meeting is a platform for Zurich-based immunology research groups to present and discuss their ongoing research projects. At each meeting three PhD students or Postdocs from the participating research groups present an ongoing research project in a 30 min seminar followed by a plenary discussion.
ObjectiveThe aim of this monthly meeting is to provide further education for master and doctoral students as well as Postdocs in diverse topics of immunology and to give an insight in the related research. Furthermore, this platform fosters the establishment of science- and technology-based interactions between the participating research groups.
ContentPresentation and discussion of current research projects carried out by various immunology-oriented research groups in Zurich.
Lecture notesnone
751-9100-00LLERNfeldW1 credit2GS. Keller
AbstractIm Dialog mit Schülerinnen und Schülern, Lehrpersonen und Bäuerinnen und Bauern kennenlernen von praktischen Aspekten von Biodiversität und Klimawandel. Unterstützung von Schülerinnen und Schülern bei Fragen rund um die Lernaktivitäten von LERNfeld, Vermittlung von wissenschaftlichem Arbeiten, Beratung von Lehrpersonen. LERNfeld ist ein Projekt der Umweltbildungsorganisation GLOBE.
ObjectiveSiehe: Link
Prerequisites / NoticeVoraussetzung für die Teilnahme sind sehr gute Deutschkenntnisse.

Anmeldung auf Link
Projektstart: März 2017
Teilnehmerzahl beschränkt.
551-1106-00LProgress Reports in Microbiology and Immunology
Students must sign up via secr.micro.biol.ethz.ch
Z Dr0 credits5SJ. Piel, M. Aebi, H.‑M. Fischer, W.‑D. Hardt, A. Oxenius, J. Vorholt-Zambelli
AbstractPresentation and discussion of current research results in the field of Microbiology and Infection Immunology
ObjectivePrecise and transparent presentation of research findings in relation to the current literature, critical discussion of experimental data and their interpretation, development and presentation of future research aims
751-1040-00LResponsible Conduct in Research Information Z Dr1 credit1UM. Paschke, N. Buchmann
AbstractWhen studying at a University, but especially when carrying out a Master’'s or doctoral thesis, students are joining the scientific community and, therefore, have to learn about the codes of professional and responsible conduct in research.
Objective(1) Students know the questions, conflicts and ethically ambiguous situations that may arise in research.
(2) Students can apply codes of responsible conduct in research, i.e., they understand and can apply the professional values and ethical norms of their profession.
(3) Students know how to deal with and communicate in ambiguous situations.
(4) Students will develop a professional attitude towards responsible conduct in research.
ContentWhen studying at a University, but especially when carrying out a Master's or a doctoral thesis, students are joining the scientific community and, therefore, have to learn about the codes of professional and responsible conduct in research. In this course, we want to increase the knowledge of our Master's and doctoral students about the specific rules, regulations and guidelines of responsible conduct in their research fields but also rise awareness for potential conflicts of interest and give practical suggestions on how to react in cases of uncertainty on e.g. questions of authorship and giving credits, data treatment and interpretation, communication and responsibility in the public or on the role of graduate students in the research community. Students will discuss case studies with a conflict potential or a dilemma. They will work together in teams, discuss the codes of conduct and values established in the scientists’ community, and apply them to the case studies. The teams have to agree on actions to be taken for each case.

Students will deal with case studies on the following topics:

(1) Scientific Integrity, Error and Negligence in Science
(2) Conflicts in Authorship Practices
(3) Questions of Data Treatment
(4) Influence of Values on Data Interpretation
(5) Social Responsibility of Scientists (e.g. Communication with the public)

Student teams will discuss the case studies in role-play scenarios and present their consensus of responsible conduct in research.
Prerequisites / Notice'Responsible Conduct in Research for Plant Scientists' is part of the Master's Courses and Master's Studies in Plant Sciences and of the PS Ph.D. Program in Plant Sciences. It is organized by the Zurich-Basel Plant Science Center. Please find details on the course at:
Link
551-0737-00LEcology and Evolution: Interaction Seminar Information Restricted registration - show details Z2 credits2SS. Bonhoeffer
AbstractInteraction seminar. Student-mediated presentations, guests and discussions on current themes in ecology, evolutionary and population biology.
ObjectiveGetting familiar with scientific arguments and discussions. Overview of current research topics. Making contacts with fellow students in other groups.
ContentScientific talks and discussions on changing subjects.
Lecture notesNone
LiteratureNone
Prerequisites / NoticeFor information and details: Link
or contact: Link
376-1414-01LCurrent Topics in Brain Research (FS)Z1 credit1.5KM. E. Schwab, F. Helmchen, I. Mansuy, further lecturers
AbstractDifferent national and international scientific guests are invited to present and discuss their most recent scientific results.
ObjectiveThe aim is to exchange scientific knowledge and data as well as to promote communication and collaborations amongst researchers. Students taking the course participate in all seminars within one semester and write a critical report about one seminar of their choice. Prof. Martin Schwab / Dr. Cecilia Nicoletti will send instructions for this report to students who have registered for the course.
ContentDifferent scientific guests working in the field of molecular cognition, neurochemistry, neuromorphology and neurophysiology present their latest scientific results.
Lecture notesno handout
Literatureno literature
551-0120-00LPlant Biology ColloquiumZ0 credits1KS. C. Zeeman, W. Gruissem, A. Rodriguez-Villalon, C. Sánchez-Rodríguez, O. Voinnet
AbstractCurrent topics in Molecular Plant Biology presented by internal and external speakers from accademia.
ObjectiveGetting insight into actual areas and challenges of Molecular Plant Biology.
ContentLink
  •  Page  1  of  1