Search result: Catalogue data in Spring Semester 2017

Mechanical Engineering Bachelor Information
6. Semester
Focus Specialization
Design, Mechanics and Materials
Focus Coordinator: Prof. Kristina Shea
In order to achieve the required 20 credit points for the Focus Specialization Design, Mechanics and Material you are free to choose any of the courses offered within the focus and are encouraged to select among those recommended. If you wish to take one of the Master level courses, you must get approval from the lecturer.
151-0304-00LEngineering Design II Information W4 credits4GK. Wegener
AbstractDimensioning (strength calculation) of machine parts,
shaft - hub - connections, welded and brazed joints, springs, screws, roller and slide bearings, transmissions, gears, clutch and brake as well as their practical applications.
ObjectiveThe students extend in that course their knowledge on the correct application of machine parts and machine elements including dimensioning. Focus is laid on the acquisition of competency to solve technical problems and judge technical solutions and to correctly apply their knowledge according to operation conditions, functionality and strength calculations.
ContentMachine parts as shaft - hub - connections, welded and brazed joints, springs, screws, roller and slide bearings, transmissions, gears, clutch and brake are discussed. The course covers for all the machine elements their functionality, their application and limits of applicability and the dimensioning is as well as their practical applications. Exercises show the solution of practical problems. Partly practical problems are solved by the students for their own.
Lecture notesScript exists. Price: SFr. 40.-
Prerequisites / NoticePrerequisites:
Basics in design and product development
Dimensioning 1

Credit-conditions / examination:
Partly practical problems are solved by the students for their own. The examination will be in the following examination session. Credits are given after passing the examination.
151-0306-00LVisualization, Simulation and Interaction - Virtual Reality I Information W4 credits4GA. Kunz
AbstractTechnology of Virtual Reality. Human factors, Creation of virtual worlds, Lighting models, Display- and acoustic- systems, Tracking, Haptic/tactile interaction, Motion platforms, Virtual prototypes, Data exchange, VR Complete systems, Augmented reality, Collaboration systems; VR and Design; Implementation of the VR in the industry; Human Computer Interfaces (HCI).
ObjectiveThe product development process in the future will be characterized by the Digital Product which is the center point for concurrent engineering with teams spreas worldwide. Visualization and simulation of complex products including their physical behaviour at an early stage of development will be relevant in future. The lecture will give an overview to techniques for virtual reality, to their ability to visualize and to simulate objects. It will be shown how virtual reality is already used in the product development process.
ContentIntroduction to the world of virtual reality; development of new VR-techniques; introduction to 3D-computergraphics; modelling; physical based simulation; human factors; human interaction; equipment for virtual reality; display technologies; tracking systems; data gloves; interaction in virtual environment; navigation; collision detection; haptic and tactile interaction; rendering; VR-systems; VR-applications in industry, virtual mockup; data exchange, augmented reality.
Lecture notesA complete version of the handout is also available in English.
Prerequisites / NoticeVoraussetzungen:
Vorlesung geeignet für D-MAVT, D-ITET, D-MTEC und D-INF

Testat/ Kredit-Bedingungen/ Prüfung:
– Teilnahme an Vorlesung und Kolloquien
– Erfolgreiche Durchführung von Übungen in Teams
– Mündliche Einzelprüfung 30 Minuten
151-0324-00LEngineering Design with Polymers and Polymer Composites Information W4 credits2V + 1UG. P. Terrasi
AbstractScope of neat and fibre reinforced polymers (FRP) for load bearing applications. State-of-the-art and trends. Design procedures for neat polymers under sustained, combined, and fatigue loading conditions. Stability and brittle fracture issues. Composition of FRP. Properties of fibre and matrix materials. Processing and design of FRP: laminate and net theory, stability, creep and fatigue behaviour.
ObjectiveImpart the basics to future mechanical, civil, and materials engineers for the engineering design with neat polymers and fibre reinforced polymers (FRP) for load bearing applications. In parallel to the presentation of the basics many practical applications will be treated in detail.
Content1. Introduction

1.1 Retrospective view
1.2 State-of-the-art
1.3 Prospects for the future
1.4 References

2. Engineering design with neat polymers and with random-oriented fibre
reinforced polymers

2.1 Scope of applications
2.2 Static loading
2.21 Tensile- and compressive loading
2.22 Flexural loading
2.23 Combined loading
2.24 Buckling
2.3 Fatigue
2.4 Brittle failure
2.5 Variable loading
2.6 Thermal stresses
2.7 To be subjected to aggressive chemicals
2.8 Processing of neat polymers
2.9 References

3. Composition and manufacturing techniques for fibre reinforced

3.1 Introduction
3.2 Materials
3.21 Matrices
3.22 Fibres
3.3 Manufacturing techniques
3.31 Hand lay-up moulding
3.32 Directed fibre spray-up moulding
3.33 Low pressure compression moulding
3.34 High pressure compression moulding
3.35 Pultrusion
3.36 Centrifugal casting
3.37 Filament winding
3.38 Robots
3.39 Remarks about the design of moulds
3.4 References

4. Engineering design with high performance fibre reinforced polymers

4.1 Introduction
4.2 The unidirectional ply (or lamina)
4.21 Stiffness of the unidirectional ply
4.22 Thermal properties of the unidirectional ply
4.23 Failure criteria for the unidirectional ply
4.3 rules fort he design of components made out of high performance fibre
reinforced polymers
4.4 Basics of the net theory
4.41 Assumptions and definitions
4.42 Estimation of the fibre forces in a plies
4.5 Basics of the classical laminate theory (CLT)
4.51 Assumptions and definitions
4.52 Elastic constants of multilayer laminate
4.53 Strains and curvatures in a multilayer laminate due to mechanical
4.54 Calculation of the stresses in the unidirectional plies due to mechanical loading
4.55 Strains and curvatures in a multilayer laminate due to mechanical and thermal loading
4.56 Calculation of the stresses in the unidirectional plies due to mechanical and thermal loading
4.57 Procedure of stress analysis
4.58 Taking account of the non-linear behaviour of the matrix
4.59 Admissible stresses, evaluation of existing stresses
4.6 Puck’s action plane fracture criteria
4.7 Selected problems of buckling
4.8 Selected problems of fatigue
4.9 References
Lecture notesThe script will be distributed at the beginning of the course
LiteratureThe script is including a comprehensive list of references
151-0332-00LInterdisciplinary Product Development: Definition, Realisation and Validation of Product Concepts
Number of participants limited to: 5 (ETHZ) + 20 (ZHdK)

To apply for the course please create a pdf of 1-2 Pages describing yourself and your motivation for the course as well as one or more of your former development projects. Please add minimum one picture and send the pdf to
W+4 credits3G + 2AM. Schütz, M. Meboldt
AbstractThis course is offered by the Design and Technology Lab Zurich, a platform where students from the disciplines industrial design (ZHdK) and mechanical engineering (ETH) can learn, meet and perform projects together. In interdisciplinary teams the students develop a product by applying methods used in the different disciplines within the early stages of product development.
ObjectiveThis interdisciplinary course has the following learning objectives:
- to learn and apply methods of the early stages of product development from both fields: mechanical engineering and industrial design
- to use iterative and prototyping-based development (different types of prototypes and test scenarios)
- to run through a development process from product definition to final prototype and understand the mechanisms behind it
- to experience collaboration with the other discipline and learn how to approach and deal with any appearing challenge
- to understand and experience consequences which may result of decision taken within the development process
ContentAt the end of the course each team should present an innovative product concept which convinces from both, the technical as well as the design perspective. The product concept should be presented as functioning prototype.

The learning objectives will be reached with the following repeating cycle:
1) input lectures
The relevant theoretical basics will be taught in short lectures by different lecturers from both disciplines, mechanical engineering an industrial design. The focus is laid on methods, processes and principles of product development.
2) team development
The students work on their projects individually and apply the taught methods. At the same time, they will be coached and supported by mentors to pass through the product development process successfully.
3) presentation
Important milestones are presented and discussed during the course, thus allowing teams to learn from each other.
4) reflection
The students deepen their understanding of the new knowledge and learn from failures. This is especially important if different disciplines work together and use methods from both fields.
Lecture notesHands out after input lectures
151-0361-00LAn Introduction to the Finite-Element Method Information W+4 credits3GG. Kress, C. Thurnherr
AbstractThe class includes mathematical ancillary concepts, derivation of element equations, numerical integration, boundary conditions and degree-of-freedom coupling, compilation of the system’s equations, element technology, solution methods, static and eigenvalue problems, iterative solution of progressing damage, beam-locking effect, modeling techniques, implementation of nonlinear solution methods.
ObjectiveObtain a theoretical background of the finite-element method.
Understand techniques for finding numerically more efficient finite elements. Understand degree-of-freedom coupling schemes and recall typical equations solution algorithms for static and eigenvalue problems. Learn how to map specific mechanical situations correctly to finite-element models. Understand how to make best use of FEM for structural analysis. Obtain a first inside into the implementation of nonlinear FEM procedures.
Content1. Introduction, direct element derivation of truss element
2. Variational methods and truss element revisited
3. Variational methods and derivation of planar finite elements
4. Curvilinear finite elements and numerical integration
5. Element Technology
6. Degrees-of-freedom coupling and solution methods
7. Iterative solution methods for damage progression analysis
8. Shear-rigid and shear compliant beam elements and locking effect
9. Beam Elements and Locking Effect
10. Harmonic vibrations and vector iteration
11. Modeling techniques
12. Implementation of nonlinear FEM procedures
Lecture notesScript and handouts are provided in class and can also be down-loaded from:
LiteratureNo textbooks required.
151-0516-00LNon-smooth DynamicsW5 credits5GC. Glocker
AbstractInequality problems in dynamics, in particular friction and impact problems with discontinuities in velocity and acceleration. Mechanical models of unilateral contacts, friction, sprag clutches, pre-stressed springs. Formulation by set-valued maps as normal cone inclusions and proximal point problems. Numerical time integration and Gauss-Seidel methods for inequalities.
ObjectiveThe lecture provides the students an introduction to modern methods for inequality problems in dynamics. The contents of the lecture are fitted to frictional contact problems in mechanics, but can be transferred to a large class of inequality problems in technical sciences. The purpose of the lecture is to acquaint the students with a consistent generalization of classical mechanics towards systems with discontinuities, and to make them familiar with inequalities treated as set-valued constitutive laws.
Content1. Kinematik: Drehung, Geschwindigkeit, Beschleunigung, virtuelle Verschiebung.
2. Aufbau der Mechanik: Definition der Kraft, virtuelle Arbeit, innere und äussere Kräfte, Wechselwirkungsprinzip, Erstarrungsprinzip, mathematische Form des Freischneidens, Definition der idealen Bindung.
3. Starre Körper: Variationelle Form der Gleichgewichtsbedingungen, Systeme starrer Körper, Übergang auf Minimalkoordinaten.
4. Einfache generalisierte Kräfte: Generalisierte Kraftrichtungen, Kinematik der Kraftelemente, Kraftgesetze, Parallel- und Reihenschaltung.
5. Darstellung mengenwertiger Kraftgesetze: Normalkegel, proximale Punkte, exakte Regularisierung. Anwendung auf einseitige Kontakte und Coulomb-Reibgesetze.
6. Stossfreie und stossbehaftete Bewegung: Bewegungsgleichung, Stossgleichung, Newton-Stossgesetze, Diskussion von Mehrfachstössen, Kane's Paradoxon.
7. Numerische Behandlung: Massgleichung, Zeitdiskretisierung nach Moreau, Inklusionsproblem in lokalen Koordinaten, Prox-Problem, Gauss-Seidl-Iteration.
Lecture notesEs gibt kein Vorlesungsskript. Den Studierenden wird empfohlen, eine eigene Mitschrift der Vorlesung anzufertigen. Ein Katalog mit Übungsaufgaben und den zugehörigen Musterlösungen wird ausgegeben.
Prerequisites / NoticeKinematik und Statik & Dynamics
151-0540-00LExperimental Mechanics Information W+4 credits2V + 1UJ. Dual
Abstract1. General aspects like transfer functions, vibrations, modal analysis, statistics, digital signal processing, phase locked loop, 2. Optical methods 3. Piezoelectricity 4. Electromagnetic excitation and detection 5. Capacitive Detection
ObjectiveUnderstanding, quantitative modelling and practical application of experimental methods for producing and measuring mechanical quantities (motion, deformation, stresses,..)
Content1. General Aspects: Measurement chain, transfer functions, vibrations and waves in continuous systems, modal analysis, statistics, digital signal analysis, phase locked loop. 2. Optical methods ( acousto optic modulation, interferometry, holography, photoelasticity, shadow optics, Moire methods ) 3. Piezoelectric materials: basic equations, applications, accelerometer ) 4. Electomagnetic excitation and detection, 5. Capacitive detection
Practical training and homeworks
Lecture notesno
Prerequisites / NoticePrerequisites: Mechanics I to III, Physics
151-0735-00LDynamic Behavior of Materials and Structures
Does not take place this semester.
W4 credits2V + 2UD. Mohr
AbstractLectures and computer labs concerned with the modeling of the deformation response and failure of engineering materials (metals, polymers and composites) subject to extreme loadings during manufacturing, crash, impact and blast events.
ObjectiveStudents will learn to apply, understand and develop computational models of a large spectrum of engineering materials to predict their dynamic deformation response and failure in finite element simulations. Students will become familiar with important dynamic testing techniques to identify material model parameters from experiments. The ultimate goal is to provide the students with the knowledge and skills required to engineer modern multi-material solutions for high performance structures in automotive, aerospace and navel engineering.
ContentTopics include viscoelasticity, temperature and rate dependent plasticity, dynamic brittle and ductile fracture; impulse transfer, impact and wave propagation in solids; computational aspects of material model implementation into hydrocodes; simulation of dynamic failure of structures;
Lecture notesSlides of the lectures, relevant journal papers and users manuals will be provided.
LiteratureVarious books will be recommended covering the topics discussed in class
Prerequisites / NoticeCourse in continuum mechanics (mandatory), finite element method (recommended)
151-3202-00LEngineering Design Methods Restricted registration - show details
Number of participants limited to 30
W+4 credits3GK. Shea, T. Stankovic
AbstractThis course introduces students to fundamental topics in engineering design for research and practice covering the main methods, models, theory and methodology. The course will be taught using a number of case studies motivated by grand challenges in engineering design.
ObjectiveThe objectives of the course are to introduce students to the most important topics in design methods, models, theory and methodology that form the basis for engineering design practice and research. A further goal is to develop design reasoning and critical thinking skills.
ContentThe content of the course will be split into three units: 1) understanding designers, 2) design processes and practice and 3) products and designed artefacts. Within each unit key topics and methods will be covered including empirical design research, design science, creativity, processes for engineering design practice, user-centered design, re-design and reverse engineering, product models including functional modeling, product lifecycle and sustainability, design for manufacture including additive manufacturing, and integrated, networked products.
Lecture notesavailable on Moodle
151-3204-00LCoaching, Leading and Organising Innovation ProjectsW4 credits4VI. Goller, R. P. Haas, M. Meboldt
AbstractThe course is building up skills and experience in leading engineering projects and coaching design teams. To gain experience and to reflect real coaching situations, the participants of the course have the role of teaching assistance of the innovation project (151-0300-00L). In this framework the participants coach teams and professionalize the knowledge in the area product development methods.
Objective- Critical thinking and reasoned judgements
- Basic knowledge about role and mindset of a coach
- Understanding the challenges of engineering projects and design teams
- Development of personal skills to apply and train product development methods
- Knowledge and know-how about applying methods
- Reflection and exchange of experiences about personal coaching situations
- Inspiration and learning from good cases regarding organizational and team management aspects
- Decision-making under uncertainty
ContentBasic knowledge about role and mindset of a coach
- Introduction into coaching: definition & models
- Introduction into the coaching process
Knowledge and reflection about the problems in coaching an innovation project
- Knowledge about team development
- Reflection about critical phases in the innovation process for an innovation team
- Know-how about reference model for analysis critical situations
Development of personal coaching competencies, e.g. active listening, asking questions, giving feedback
- Competencies in theoretical models
- Coaching competencies: exercises and reflection
Knowledge and know-how about coaching methods
- Knowledge about basic coaching methods for technical projects/innovations projects
- Know-how about usage of methods in the coaching process
Reflection and exchange of experiences about personal coaching situations
- Self-reflection
- Exchange of experiences in the lecture group
Good practice on orgaizational and management aspects
- How to do system and concurrent engineering
- agile development methods (Scrum)
- Projct planning and replanning
Facilitating conflict situations
- Sample cases from former teams
- Actual cases of participants
Role of coaches between examinator and "friend"
- Facilitating decisions
- Using and applying coaches opinions and knokwledge
Lecture notesSlides, script and other documents will be distributed electronically
(access only for paticipants registered to this course).
LiteraturePlease refer to a lecture script.
Prerequisites / NoticeOnly for participants (Bachelor Students, Master Students) who are teaching assistants in the innovation project).
151-3206-00LSystemic Design for SustainabilityW4 credits3GT. Luthe
AbstractThis course introduces students to systemic design for sustainability to enable designers and engineers to take more effective action toward improving the complex sustainability challenges of today. Fundamental topics in systemic design cover the main theory, methods, and frameworks. Students will design and engineer their own outdoor sports product (e.g. a Surf-/Kite-/Skateboard).
ObjectiveThe growing necessity to consider eco-social aspects makes engineering design more complex. Systemic design combines systems thinking skills with design thinking to address such complexity. The objectives of the course are to introduce students to the most important topics in systemic design methods, models, theory and methodology that form the basis for engineering design practice and research for sustainability. A main goal is to develop whole systems thinking, life cycle and cradle to cradle thinking, to build knowledge on environmental impacts of materials and processes, and to stimulate overall reflective eco-social thinking in engineering design. Theory is applied by designing and engineering an individual outdoor sports product pushing the limits of systemic design for sustainability.
ContentThe course is organized in four units with a theoretical and a practical part : Unit 1) Create a self-reflective, in-depth understanding of sustainability in general and in specific relation with engineering design, Unit 2) Develop whole systems thinking and learn systemic design tools such as life cycle design, cradle to cradle design, upcycling, biomimicry, Unit 3) Understand the human behavioral factors within systemic design and sustainability impact assessment. Unit 4) Apply theory to practice and build your own Surf-/Kite-/Longboard according to the systemic design skills acquired during this course. Students will finish a sustainability impact study for ecological, social, technical and economic peformance indicators of the products they design and build.
Lecture notesavailable on Moodle
Literaturee.g. Striebig, B. and Ogundipe, A. 2016. Engineering Applications in Sustainable Design and Development. ISBN-10: 8131529053.
Jones, P. 2014. Design research methods for systemic design: Perspectives from design education and practice. Proceedings of ISSS 2014, July 28 - Aug1, 2014, Washington, D.C.
Blizzard, J. L. and L. E. Klotz. 2012. A framework for sustainable whole systems design. Design Studies 33(5).
Brown, T. and J. Wyatt. 2010. Design thinking for social innovation. Stanford Social Innovation Review. Stanford University.
Fischer, M. 2015. Design it! Solving Sustainability problems by applying design thinking. GAIA 24/3:174-178.
Luthe, T., Kaegi, T. and J. Reger. 2013. A Systems Approach to Sustainable Technical Product Design. Combining life cycle assessment and virtual development in the case of skis. Journal of Industrial Ecology 17(4), 605-617. DOI: 10.1111/jiec.12000
Prerequisites / NoticePrior to the course start the literature has to be read as a preparation. Willingness to engage in the practical building part also beyond the course hours in the evening. Finishing an impact evaluation study within and outside of the contact lessons.
  •  Page  1  of  1