Suchergebnis: Katalogdaten im Herbstsemester 2017

Erdwissenschaften Master Information
Vertiefung in Geology
Wahlmodule Geology
Basin Analysis
Basin Analysis: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-4231-00LBasin AnalysisW+3 KP2GS. Willett, T. I. Eglinton, M. Lupker
KurzbeschreibungThe course discusses the formation and development of different basin types as part of lithosphere geodynamics. It introduces conceptual models and governing physics, with practical application to the study of basin evolution. Techniques for the analysis of subsidence and thermal history are demonstrated. Organic matter, petroleum play, and their biogeochemical investigation are examined.
LernzielBased on the introductory education and practical training during this course, each participant should be able to choose and apply approaches and techniques to own problems of basin analysis, and should be versed to expand their knowledge independently.

In particular, each participant should:

- Develop an intuitive understanding for origin, dynamics, and temporal evolution of basins in a geological / geodynamic context;

- Acquire the necessary theoretical foundation to describe basin evolution quantitatively;

- Be familiar with geological and geophysical methods that are applied to obtain information about rock properties, structural geometry, and thermal and subsidence history of basins;

- Understand the burial and maturation of organic matter in basins, the development of petroleum play, and be acquainted with geochemical methods to study the evolution of biogenic carbon.
InhaltThe following topics are covered:

- Introduction; classification schemes and types of basins; heat conduction; geotherms;

- The lithosphere; isostasy; rifts and basins due to lithospheric stretching; uniform extension model; modifications to the uniform stretching model; dynamics of rifting.

- Elasticity of the lithosphere; flexural compensation; geometry and analytical description of loads and the resulting deflection; foreland basins; their anatomy;

- Reconstruction of basin evolution; borehole data; porosity loss and decompaction; backstripping; subsidence curves; thermal history and its reconstruction;

- Petroleum play concept; organic production; source rock prediction and depositional environment; petroleum generation, expulsion, migration, alteration; reservoir and traps;

- Carbon cycle; maturation of organic matter; geochemistry of biogenic carbon; biomarkers; analytical techniques

- Overview of other basin types: effects of mantle dynamics, strike-slip basins.

Each week of the course is split in lectures and corresponding practicals, in which the concepts are applied to simplified problems.

Grading of the semester performance is based on submitted practicals (50%) and a final exam (50%). The exam will take place in the time slot of the last practical (18.12.).
SkriptLecture notes are provided online during the course. They summarize the current subjects week by week, and provide the essential theoretical background.
LiteraturMain reference :

Allen, P.A., and Allen, J.R., 2013. Basin Analysis - Principles and Application to petroleum play assessment
3rd edition, 619 pp. Wiley-Blackwell, Chichester, UK.
ISBN 978-0-470-67376-8

Recommended, but not required (available in library).



Supplementary:
Turcotte, D.L., and Schubert, S., 2002. Geodynamics.
2nd edition, 456 pp. Cambridge University Press.
ISBN 0-521-66624-4.

Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The biomarker guide (volume 2).
2nd edition, Cambridge University Press.
ISBN 0-521-83762-6.
Voraussetzungen / BesonderesFamiliarity with MATLAB is advantageous, but not required.
Basin Analysis: Wahlfächer
NummerTitelTypECTSUmfangDozierende
651-4243-00LSeismic Stratigraphy and FaciesW2 KP3GG. Eberli
KurzbeschreibungIntroduction into seismic interpretation for solving geological and environmental problems. A special focus is given to the seismic facies analysis and seismic sequence stratigraphy. In addition, the seismic attributes are explained, which are important for the analysis of paleo-geomorphology and structural deformation.
Lernziel1. Acquire techniques for a comprehensive interpretation of seismic sections for solving geologic, tectonic, stratigraphic and environmental problems

2. Correlation of seismic facies to lithologic facies in different sedimentary systems

3. Recognition of structural elements and faults on seismic sections.

4. Learning the techniques of 3D seismic data interpretation

5. Reconstruction of sedimentary history using seismic stratigraphy and facies analysis and core information.
InhaltThe four day course consists of lectures that are accompanied by a variety of exercises.

Day 1:
Introduction seismic facies analysis with exercise
Seismic resolution
Factors controlling sedimentation
Exercise: Seismic section in Straits of Florida

Day 2:
Seismic attributes and seismic geomorphology
Siliciclastic deltas, shelves and turbidite systems, 2D-3D
Exercise: Seismic section Tarragon Basin
Seismic facies carbonates
Exercise: Seismic section platform margin Great Bahama Bank
Deepwater environments, including cold-water coral habitats

Day 3:
Seismic facies of mixed systems with exercises
Faults and structures on seismic sections
Exercise: Seismic section Golf von Mexiko

Day 4:
Telling ages on seismic section
Seismic stratigraphy and sequence stratigraphy
Exercise: Sequence analysis Straits of Andros
Final discussion
SkriptAn original script (110 pages) designed for the class will be distributed at the beginning of the course.
LiteraturBooks Seismic Facies:

Ariztegui, D. and Wildi, W. (eds.), 2003, Lake Systems from Ice Age to Industrial Time. Eclogae Geologicae Helvetiae Special Issue, v. 96, S1-S133.

Bacon, M., Simm, R. and Redshaw, T., 2003, 3-D Seismic Interpretation. Cambridge University Press, 112 pp.

Brown, A.R., 1999, Interpretation of 3-Dimensional seismic data. AAPG Memoir 42, fivth edition. pp. 341.

Davies, R.J., Posementier, H.W., Wood, L.J., and Cartwright, J.A. (eds.), 2007, Seismic Geomorphology. Geological Society Special Publication 277, pp274.

Eberli, G.P., Massaferro, J.L., and Sarg, J.F. (eds.), 2004, Seismic Imaging of Carbonate Reservoirs and Systems. AAPG Memoir 81.

Harris P.M. and Weber L.J. (eds.), 2006, Giant hydrocarbon reservoirs of the world: From rocks to reservoir characterization and modeling. AAPG Memoir, v. 88.

Marfurt, F.J. and Palaz, A. (eds.), 1997, Carbonate Seismology: SEG Geophysical Developments Series 6. pp. 443.

Weimer, P. and Davis, T.L. (eds.), 1996, Applications of 3-D seismic data to exploration and production. AAPG Studies in Geology, No. 42 and SEG Geophysical Development Series, No. 5., pp. 270.

Weimer, P. and Link, M.H. (eds), 1991, Seismic facies and sedimentary processes of submarine fans and turbidite systems. Springer Verlag, New York.



Books Seismic Stratigraphy:

Bally, A.W., (ed.), 1989, Atlas of seismic stratigraphy, AAPG Studies in Geology Series No. 27, vol. 1-3.

Gupta, S. and Cowie, P. (eds). 2000, Controls in the Stratigraphic Development of Extensional Basins. Basin Research Special Issue, v. 12, 445pp

Harris, P.M., Saller, A.H., and Simo, J.A. (eds.), 1999, Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops, and models. SEPM Special Publication v. 63.

Homewood, P.W., Mauriaud, P., and Lafont, F., 2000, Best Practices in Sequence Stratigraphy - for explorationists and reservoir engineers. Elf-ep Memoire 25. 81pp.

Loucks, R. G. and J. F. Sarg, (eds.), 1993, Carbonate Sequence Stratigraphy. AAPG Memoir 57, 545pp.

Payton, C.E., (ed.), 1977, Seismic stratigraphy-applications to hydrocarbon exploration. AAPG Memoir 26, 516pp.

Schlager, W., 1992, Sedimentology and sequence stratigraphy of reefs and carbonate platforms: AAPG Cont. Education course notes #34, pp71.

Van Wagoner, J.C., R.M. Mitchum, K.M. Campion, and V.D. Rahmanian, 1990, Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. AAPG Methods in Exploration Series, No. 7, 55pp.

Weimer, P. and Posamentier, H.W., 1993, Siliciclastic Sequence Stratigraphy: Recent Developments and Applications. AAPG Memoir 58.
Voraussetzungen / BesonderesBasic knowledge in sedimentology and stratigraphy
Earthquake Seismology
Earthquake Seismology: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-4021-00LEngineering SeismologyW+3 KP2GD. Fäh, S. S. Bora
KurzbeschreibungThis course is a general introduction to the methods of seismic hazard analysis. It provides an overview of the input data and the tools in deterministic and probabilistic seismic hazard assessment, and discusses the related uncertainties.
LernzielThis course is a general introduction to the methods of seismic hazard analysis.
InhaltIn the course it is explained how the disciplines of seismology, geology, strong-motion geophysics, and earthquake engineering contribute to the evaluation of seismic hazard. It provides an overview of the input data and the tools in deterministic and probabilistic seismic hazard assessment, and discusses the related uncertainties. The course includes the discussion related to Intensity and macroseismic scales, historical seismicity and earthquake catalogues, ground motion parameters used in earthquake engineering, definitions of the seismic source, ground motion attenuation, site effects and microzonation, and the use of numerical tools to estimate ground motion parameters, both in a deterministic and probabilistic sense.
During the course recent earthquakes and their impacts are discussed and related to existing hazard assessments for the areas of interest.
651-4015-00LEarthquakes I: SeismotectonicsO3 KP2GA. P. Rinaldi, I. Molinari, Y. van Dinther
KurzbeschreibungIf you're interested in knowing more about the relationship between seismicity and plate tectonics, this is the course for you. (If you're not that interested, but your program of study requires that you complete this course, this is also the course for you.)
LernzielThe aim of the course is to obtain a basic understanding of the physical process behind earthquakes and their basic mathematical description. By the conclusion of this course, we hope that you will be able to:
- describe the relationship between earthquakes and plate tectonics in a more sophisticated and complete way
- explain earthquake source representations of varying complexity;
- address earthquakes in the context of different tectonic settings;
- explain the statistical behaviour of global earthquakes
- describe and connect the ingredients for a seismotectonic study
InhaltThe course features a series of 14 meetings, in which we review some fundamentals of continuum mechanics and tensor analysis required for a complete understanding of the relation between earthquakes and plate tectonics. Our goal is to help you understand deformation the small scale (fault) to the scale of plate tectonics. We will tell you about several ways to represent an earthquake source; we'll present these in order of increasing sophistication. You will enjoy (at least) a computer/class exercise and a guest lecture.

Topics covered in the course include:
review of stress and deformation in the Earth, stress and strain tensors, rheology and failure criteria, fault stresses, friction and effects of fluids
earthquake focal mechanisms; relationship between stress fields and focal mechanisms;
seismic moment and moment tensors;
crustal deformation from seismic, geologic, and geodetic observations;
earthquake stress drop, scaling, and source parameters;
global earthquake distribution; current global earthquake activity;
different seismotectonic regions; examples of earthquake activity in different tectonic settings.
SkriptCourse notes will be made available on a designated course web site. Most of the topics discussed in the course are available in the book mentioned below.
LiteraturS. Stein and M. Wyssession, An introduction to seismology, earthquakes and earth structure, Blackwell Publishing, Malden, USA, (2003).
Voraussetzungen / BesonderesBasic knowledge of continuum mechanics and rock mechanics, as well as notion of tensor analysis is strongly suggested. We recommend to have taken the course Continuum Mechanics (generally taught during the Fall semester).


This course will be taught in fall 2017 and it will be followed by Earthquakes 2: Source Physics in Spring 2018.

The course will be evaluated in a final written test covering the topics discussed during the lectures.

The course will be worth 3 credit points, and a satisfactory total grade (4 or better) is needed to obtain 3 ECTS.

The course will be given in English.
651-4103-00LEarthquakes II: Source Physics Information
Findet dieses Semester nicht statt.
O3 KP2GS. Wiemer
KurzbeschreibungThis course teaches the fundamental principles to understand physical processes leading to and governing earthquake ruptures. To obtain that understanding we cover topics ranging from friction and fault mechanics to earthquake source descriptions. The acquired in-depth understanding will be applied to a topic of choice to practice research skills.
LernzielThe aim of the course is to gain a fundamental understanding of the physical processes leading to and governing earthquake ruptures. This means that students will be able to:
- describe earthquake sources both conceptually and mathematically,
- explain processes affecting earthquake nucleation, propagation and arrest,
- explain processes affecting inter-, co-, and postseismic,
- differentiate source kinematic and dynamic concepts,
- interpret earthquake source properties from both perspectives,
- derive fundamental equations in elasto-statistics and dynamics,
- interpret earthquake occurrences and put them in perspective,
- address fundamental questions in earthquake physics, and
- critically assess and discuss scientific literature.
InhaltWe will cover a range of topics, including:
- Basics of earthquake mechanics: definitions, faults, elastic rebound theory, and source parameters
- Elastostatics: strain, stress, dislocation theory,
- Elastodynamics: equation of motion,
- Mathematical description of the source: Representation theorem, point and extended sources, source spectra,
- Source dynamics: Linear Elastic Fracture Mechanics,
- Fault mechanics and friction laws,
- Seismic cycle: inter-, co-, post- and pre-seismic processes,
- Rupture dynamics: nucleation, propagation and arrest,
- Energy partitioning,
- Source inversion, and
- Earthquake statistics and interaction.

To deepen our understanding their will be larger exercises on laboratory experiments, recurrence models, modeling of dynamic ruptures and seismic cycles and Coulumb stress changes.

After a theoretical understanding has been acquired, we invite students to apply this knowledge to their topic of preference by presenting a group of state-of-the-art and/or classical papers as a final project. This will require them to understand and evaluate current challenges and state-of-the-art practices in earthquake physics. Additionally, this stimulates participants to improve their skills to:
- critically analyze (to be) published papers,
- disseminate knowledge within their own and neighboring research fields,
- formulate their opinion, new ideas and broader implications,
- present their findings to an audience, and
- ask questions and actively participate in discussions on new scientific ideas.
Potential topics can deepen the discussed topics or extend into active fields of research, such as spectra of slow slip, induced seismicity, earthquakes in different tectonics settings, earthquake statistics, stress drop, geodetic seismology, static and dynamic triggering, frictional formulations from laboratory experiments, aftershocks, earthquake early warning, tsunami's, and earthquake forecasting.
SkriptCourse notes will be made available on a designated course web site. An overview of the discussed principles are available in the three books mentioned below.
Literatur- The Mechanics of Earthquakes and Faulting by Ch. Scholz (2002), Cambridge University Press

- Quantitative Seismology by K. Aki and P.G. Richards (2nd edition, 2002), University Science Books.

- Source Mechanisms of Earthquakes, Theory and Practice by Udias, Madariaga and Buforn (2014), Cambridge University Press.
Voraussetzungen / BesonderesThis course will be taught in spring 2018 following Earthquakes 1: seismotectonics in Fall 2017. We recommend to have taken Earthquakes 1: Seismotectonics, although a decent understanding of physics, mathematics (i.e. linear algebra, tensor calculus, and differential equations), seismology, and/or continuum mechanics surely compensates for that.

The course will be evaluated in 2 parts:
- a final exam at the end of the course,
- a presentation discussing a topic of chose based on a group of suggested papers

The course will be worth 3 credit points, and a satisfactory total grade (4 or better) is needed to obtain 3 ECTS. The final writing exam has a weight of 70% and the presentation weighs for 30%.

The course will be given in English.
Earthquake Seismology: Wahlpflichtfächer
Neben den obligatorischen Kursen muss für dieses Modul muss zusätzlich ein frei wählbarer Kurs im Umfang von mind. 3KP nach Absprache mit dem Fachberater gewählt werden (HS oder FS).
Geographic Information Systems
Die Fächer des Moduls werden von der UZH angeboten und müssen an der UZH belegt werden.
Geographic Information Systems: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-4267-00LVertiefung Geographische Informationswissenschaft V (Universität Zürich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: GEO372

Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html
W+5 KP2V + 2UUni-Dozierende
Kurzbeschreibung
Lernziel
Geographic Information Systems: Wahlpflichtfächer
Die Wahlfplichtfächer werden an der UZH belegt und müssen vom Fachberater bewilligt werden.
Geomagnetics
Geomagnetics: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-4107-00LRock and Environmental MagnetismW+3 KP2GA. M. Hirt
KurzbeschreibungThe course will cover basic physical theory related to mineral and rock magnetism, measurement techniques, and applications in earth and soil sciences, climatology and biophysics
LernzielThere are two objectives in this course: (1) to acquire an understanding of the physical theory behind the origin of magnetism in a mineral or rock; and (2) to learn how material magnetic properties can be used to study environmental and geologic systems and processes
Inhalt1. Fundamentals of magnetism
2. Magnetic mineralogy
3. Measurement techniques
4. Special Topics: Magnetoclimatology, mass transport, pollution monitoring, biophysics, magnetic properties of nanoscale materials. Will cater to interest of participants.
SkriptAvailable over cifex during the semester
Geomagnetics: Wahlfpflichtfächer
Neben den obligatorischen Kursen muss für dieses Modul zusätzlich ein frei wählbarer Kurs im Umfang von mind. 3KP nach Absprache mit dem Fachberater gewählt werden (HS oder FS).
Glaciology
Glaciology: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-3561-00LKryosphäre Information W+3 KP2VM. Funk, M. Huss, K. Steffen
KurzbeschreibungDie verschiedenen Teile der Kryosphäre - Schnee, Gletscher, Meereis, Permafrost - und ihre Rolle im Klimasystem werden eingeführt. An jedem Teilsystem wird dabei ein wesentlicher physikalischer Aspekte betont.
Absolvierende können die Dynamik der Kryosphärenkomponenten formal und anhand von Beispielen beschreiben.
LernzielDie Studierenden können
- die wichtigsten Komponenten der Kryosphäre und ihre Rolle im Klimasystem qualitativ beschreiben
- die relevanten physikalischen Prozesse, welche den Zustand der Kryosphären-Komponenten bestimmen, formal beschreiben
InhaltEinführung in die verschiedenen Teile der Kryosphäre: Schnee, Gletscher, Meereis, Permafrost, und ihre Rolle im Klimasystem. An jedem Teilsystem wird ein wesentlicher physikalischer Aspekte betont: Materialeigenschaften bei Eis, Massenbilanz und Dynamik bei Gletschern und Energiebilanz bei Meereis.
SkriptUnterlagen werden im Semester verteilt
Glaciology: Wahlfplichtfächer
NummerTitelTypECTSUmfangDozierende
651-1581-00LSeminar in GlaciologyW3 KP2SA. Bauder
KurzbeschreibungStudium aktueller und klassischer Arbeiten der glaziologischen Forschung
LernzielVertiefte Kenntnisse in ausgewählten Bereichen der glaziologischen Forschung erarbeiten. Kennenlernen von Formen der wissenschaftlicher Präsentation und Verbessern der eigenen Fähigkeit in der Disskussion von wissenschaftlichen Themen.
InhaltStudium aktueller und klassischer Arbeiten der glaziologischen Forschung
Skriptbenötigte Unterlagen werden im Verlauf der Veranstaltung abgegeben
651-4077-00LQuantification and Modeling of the Cryosphere: Dynamic Processes (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: GEO815

Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html
W3 KP1VUni-Dozierende
KurzbeschreibungÜbersicht über die wichtigsten formbildenden Prozesse und Landschaftsformen in kalten Regionen der Erde (Gletschergebiete und Gebiete intensiven Bodenfrostes) mit Schwerpunkt Hochgebirge. Diskussion aktueller Forschungsfragen.
LernzielKenntnis der wichtigsten klimarelevanten geomorphologischen Prozesse und Phänomene im Hochgebirge, Verständnis für aktuelle Forschungsfragen.
InhaltErosion und Sedimentation durch Gletscher in Abhängigkeit von Klima, Topographie, Eistemperatur, Sedimentbilanz, Gleitbewegung und Schmelzwasserabfluss. Prozesse und Formen im Bereich des jahreszeitlichen und ganzjährigen Bodenfrostes (Frostverwitterung, Felsstürze, Schutthalden, Solifluktion, Permafrostkriechen/Blockgletscher, Murgänge).
SkriptGlacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 Seiten.
Literaturreferences in skript
Voraussetzungen / BesonderesGrundkenntisse über Geomorphologie und Gletscher und Permafrost aus dem Kursangebot von ETH/UZH oder entsprechenden Vorlesungsskripten
651-4101-00LPhysics of Glaciers Information W3 KP3GM. Lüthi, G. Jouvet, F. T. Walter, M. Werder
KurzbeschreibungUnderstanding glaciers and ice sheets with simple physical concepts. Topics include the reaction of glaciers to the climate, flow of glacier ice, temperature in glaciers and ice sheets, glacier hydrology, glacier seismology, basal motion and calving glaciers. A special focus is the current development of Greenland and Antarctica.
LernzielAfter the course the students are able understand and interpret measurements of ice flow, subglacial water pressure and ice temperature. They will have an understanding of glaciology-related physical concepts sufficient to understand most of the contemporary literature on the topic. The students will be well equipped to work on glacier-related problems by numerical modeling, remote sensing, and field work.
InhaltThe dynamics of glaciers and polar ice sheets is the key requisite to understand their history and their future evolution. We will take a closer look at ice deformation, basal motion, heat flow and glacier hydraulics. The specific dynamics of tide water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate).
Skripthttp://people.ee.ethz.ch/~luethim/teaching.html
LiteraturA list of relevant literature is available on the class web site.
Voraussetzungen / BesonderesGood high school mathematics and physics knowledge required.
101-0289-00LAngewandte Glaziologie Information W3 KP2GM. Funk, A. Bauder, D. Farinotti
KurzbeschreibungEs werden physikalische Grundlagen vermittelt, die zum Verstaendnis praktischer Anwendungen noetig sind. Themen sind: Gletscher-Klima-Beziehung, Gletscherfliessen, Seeeis und Gletscherhydrologie.
LernzielVerstehen der Grundbegriffe sowie der wichtigsten physikalischen Prozesse in der Glaziologie.
Kennenlernen der Modellieransätze zur Beschreibung der Dynamik von Gletschern.
Erkennen der Gefahren die von Gletschern ausgehen können.
InhaltGrundbegriffe der Glaziologie
Dynamik von Gletschern: Deformation von Gletschereis, Einfluss des Wassers auf die Gletscherbewegung, Reaktion von Gletschern auf Klimaschwankungen, aussergewöhnliche Gletschervorstösse (surge)
Gletscherabbrüche
Gletscherhochwasser
Seeeis
SkriptUnterlagen werden während der Vorlesung abgegeben.
LiteraturRelevante Literatur wird während der Vorlesung angegeben.
Voraussetzungen / BesonderesFür aktuelle Fallbeispiele werden risikobasierte Massnahmen bei glaziologischen Naturgefahren diskutiert.

Voraussetzungen: Es werden Grundkenntnisse in Mechanik und Physik vorausgesetzt.
Lithosphere Structure and Tectonics
NummerTitelTypECTSUmfangDozierende
651-4014-00LSeismic TomographyW+3 KP2GE. Kissling, T. Diehl, I. Molinari
KurzbeschreibungSeismic tomography is the science of interpreting seismic measurements (seismograms) to derive information about the structure of the Earth. The subject of this course is the formal relationship existing between a seismic measurement and the nature of the Earth, or of certain regions of the Earth, and the ways to use it, to gain information about the Earth.
Lernziel
LiteraturAki, K. and P. G. Richards, Quantitative Seismology, second edition, University Science Books, Sausalito, 2002. The most standard textbook in seismology, for grad students and advanced undergraduates.
Dahlen, F. A. and J. Tromp, Theoretical Global Seismology, Princeton University Press, Princeton, 1998. A very good book, suited for advanced graduate students with a strong math background.
Kennett B.L.N., The Seismic Wavefield. Volume I: Introduction and Theoretical Development (2001). Volume II: Interpretation of Seismograms on Regional and Global Scales (2002). Cambridge University Press.
Lay, T. and T. C. Wallace, Modern Global Seismology, Academic Press, San Diego, 1995. A very basic seismology textbook. Chapters 2 through 4 provide a useful introduction to the contents of this course.
Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, revised edition, Academic Press, San Diego, 1989. A very complete textbook on inverse theory in geophysics.
Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes, Cambridge University Press. The art of scientific computing.
Trefethen, L. N. and D. Bau III, Numerical Linear Algebra, Soc. for Ind. and Appl. Math., Philadelphia, 1997. A textbook on the numerical solution of large linear inverse problems, designed for advanced math undergraduates.
651-3521-00LTektonikW+3 KP2VJ.‑P. Burg, E. Kissling
KurzbeschreibungUmfassendes Verständnis der Entwicklung, Mechanik und Rheologie von tektonischen Systeme (divergente, konvergente und Blattverschiebungs-Systeme) im Massstab Lithosphäre, Kruste und im Aufschluss. Studium der plattentektonischen und anderen Orogenese-Prozesse anhand von Vergleichsbeispielen aus dem Alpen-Himalaya Orogen-System.
LernzielUmfassendes Verständnis der Entwicklung, Mechanik und Rheologie von tektonischen Systeme (divergente, konvergente und Blattverschiebungs-Systeme) im Massstab Lithosphäre, Kruste und im Aufschluss.
Abschätzung der Mechanismen und Kräfte, welche für Plattenbewegungen im allgemeinen und für spezielle großräumige Strukturen (ozeanische Becken und Zyklus der ozeanischen Lithoshpäre, Gebirgssysteme und kontinentales Wachstum, usw.) verantwortlich sind, basierend auf theoretischen und experimentellen Informationen.
Studium der plattentektonischen und anderen Orogenese-Prozesse anhand von Vergleichsbeispielen aus dem Alpen-Himalaya Orogen-System.
InhaltPlattentektoniksysteme: System Mantel-Lithosphärenplatten, drei Arten von Plattengrenzen, ihre Rollen und Charakteristika, Zyklus der ozeanischen Lithosphäre, Kratone, Wachstum der Kontinente und Bildung der Superkontinente. Rheologie der geschichteten Lithosphäre und des oberen Mantels.
Obduktionssysteme
Kollisionssysteme
Extensionssysteme
Entwicklung der Becken
Passive and aktive Kontinentalränder
SkriptAusführliches Skriptum in digitaler Form und weitere Lernmodule (www.lead.ethz.ch) auf dem intranet vorhanden.
LiteraturCondie, K. C. 1997. Plate tectonics and crustal evolution. Butterworth-Heinemann, Oxford.
Cox, A. & Hart, R. B. 1986. Plate tectonics. How it works. Blackwell Scientific Publications, Oxford.
Dewey, J. F. 1977. Suture zone complexities: A review. Tectonophysics 40, 53-67.
Dewey, J. F., Pitman III, W. C., Ryan, W. B. F. & Bonin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180.
Kearey, P. & Vine, F. J. 1990. Global tectonics. Blackwell Scientific Publications, Oxford.
Park, R. G. 1993. Geological structures and moving plates. Chapman & Hall, Glasgow.
Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge University Press, Cambridge.
Windley, B. F. 1995. The evolving continents. John Wiley & Sons Ltd, Chichester.
Palaeontology
Palaeontology: Obligatorische Fächer
Die obligatorischen Fächer finden nur im FS statt.
Palaeontology: Wahlpflichtfächer
Die Wahlpflichtfächer werden von der UZH angeboten und müssen an der UZH belegt werden.
NummerTitelTypECTSUmfangDozierende
651-1380-00LPaläontologische Exkursionen (Universität Zürich) Information
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: BIO279

Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html
W1 KP1PUni-Dozierende
Kurzbeschreibung
LernzielBesuch von Fossilvorkommen im In- und Ausland, um die Erhaltung der Fossilien, die fazielle Ausbildung und die Stratigraphie der fossilführenden Schichten kennenzulernen und zu diskutieren sowie gegebe- nenfalls Fossilien zu sammeln.
InhaltBevorzugte Ziele ein- und zweitägiger Exkursionen sind: Jura der Nordschweiz und von Süddeutschland. Kreide des westlichen Juragebirges und des Helvetikums. Mesozoikum des Südtessins, speziell des Monte San Giorgio. Molasse der weiteren Umgebung von Zürich.
Ziele mehrtägiger Exkursionen sind u. a.: Mesozoikum und Tertiär der Südalpen. Tertiär des Wiener Beckens. Paläozoikum der Eifel, des Barrandiums, von Gotland und von Wales. Jura von Südengland. Jura und Kreide von Südfrankreich. Paläozoikum und Mesozoikum in Spanien. Aktuopaläontologie im Watt der Nordsee.
Quaternary Geology and Geomorphology
NummerTitelTypECTSUmfangDozierende
651-4901-00LQuaternary Dating Methods Information W3 KP2GI. Hajdas, S. Ivy Ochs
KurzbeschreibungReconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture we focus on the six methods that are most frequently used for dating Quaternary sediments and landforms.
LernzielStudents will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories.

At the end of the course students will:
1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies.
2. be able to calculate an age based on data of the six methods studied.
3. choose which dating method (or combination of methods) is suitable for a certain field problem.
4. critically read and evaluate the application of dating methods in scientific publications.
Inhalt1. Introduction: Time scales for the Quaternary, Isotopes and decay
2. Radiocarbon dating: principles and applications
3. Cosmogenic nuclides: 3He,10Be, 14C, 21Ne, 26Cl, 36Cl
4. U-series disequilibrium dating
5. Luminescence dating
5. K/Ar and Ar/Ar dating of lava flows and ash layers
6. Cs-137 and Pb-210 (soil, sediments, ice core)
7. Summary and comparison of results from several dating methods at specific sites
Voraussetzungen / BesonderesVisit to radiocarbon lab, cosmogenic nuclide lab, noble gas lab, accelerator (AMS) facility.

Required attending the lecture, visiting laboratories, handing back solutions for problem sets (Excercises)
651-4077-00LQuantification and Modeling of the Cryosphere: Dynamic Processes (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: GEO815

Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html
W3 KP1VUni-Dozierende
KurzbeschreibungÜbersicht über die wichtigsten formbildenden Prozesse und Landschaftsformen in kalten Regionen der Erde (Gletschergebiete und Gebiete intensiven Bodenfrostes) mit Schwerpunkt Hochgebirge. Diskussion aktueller Forschungsfragen.
LernzielKenntnis der wichtigsten klimarelevanten geomorphologischen Prozesse und Phänomene im Hochgebirge, Verständnis für aktuelle Forschungsfragen.
InhaltErosion und Sedimentation durch Gletscher in Abhängigkeit von Klima, Topographie, Eistemperatur, Sedimentbilanz, Gleitbewegung und Schmelzwasserabfluss. Prozesse und Formen im Bereich des jahreszeitlichen und ganzjährigen Bodenfrostes (Frostverwitterung, Felsstürze, Schutthalden, Solifluktion, Permafrostkriechen/Blockgletscher, Murgänge).
SkriptGlacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 Seiten.
Literaturreferences in skript
Voraussetzungen / BesonderesGrundkenntisse über Geomorphologie und Gletscher und Permafrost aus dem Kursangebot von ETH/UZH oder entsprechenden Vorlesungsskripten
Remote Sensing
Die Fächer des Moduls werden von der UZH angeboten und müssen an der UZH belegt werden.
Remote Sensing: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-4263-00LFernerkundung und Geographische Informationswissenschaft V (Universität Zürich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: GEO371

Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html
W+5 KP2V + 2UUni-Dozierende
Kurzbeschreibung
Lernziel
Remote Sensing: Wahlpflichtfächer
NummerTitelTypECTSUmfangDozierende
651-4269-00LSpecialisation in Remote Sensing: Spectroscopy of the Earth System (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: GEO442

Voraussetzung: Methoden der Fernerkundung (UZH Modulkürzel: GEO371)

Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html
W6 KP2V + 2UUni-Dozierende
Kurzbeschreibung
Lernziel
651-4257-00LSpecialisation in Remote Sensing: SAR and LIDAR (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: GEO443

Voraussetzung: Methoden der Fernerkundung (UZH Modulkürzel: GEO371)

Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html
W6 KP2V + 2UUni-Dozierende
Kurzbeschreibung
Lernziel
  •  Seite  1  von  2 Nächste Seite Letzte Seite     Alle