Suchergebnis: Katalogdaten im Herbstsemester 2017

Erdwissenschaften Bachelor Information
Bachelor-Studium (Studienreglement 2016)
1. Semester
Allgemeine erdwissenschaftliche Fächer
NummerTitelTypECTSUmfangDozierende
651-3301-00LKristalle und MineralienO4 KP2V + 1.5UP. Brack, E. Reusser
KurzbeschreibungQualitatives und teilweise quantitatives Verständnis für den Aufbau von Kristallen und Mineralien, für die Zusammenhänge zwischen chemischer Zusammensetzung, Kristallstruktur und physikalischen Eigenschaften, für das Wachstum von Kristallen sowie wichtiger identifikationsrelevanter makroskopischer Eigenschaften; selbständige Identifikation der rund 70 wichtigsten Mineralarten.
LernzielQualitatives und teilweise quantitatives Verständnis für den Aufbau von Kristallen und Mineralien, für die Zusammenhänge zwischen chemischer Zusammensetzung, Kristallstruktur und physikalischen Eigenschaften, für das Wachstum von Kristallen sowie wichtiger identifikationsrelevanter makroskopischer Eigenschaften; selbständige Identifikation der rund 70 wichtigsten Mineralarten.
Inhalto Symmetrien und Ordnung, Punktgruppen, Translationsgruppen, Raumgruppen.
o einfache Strukturtypen, dichte Kugelpackungen, Strukturbestimmende Faktoren
o Chemisch Bindungen, Beziehungen zwischen Struktur und Eigenschaften eine Kristalls.
o Grundlagen von Thermodynamik und Computersimulationen in der Kristallographie.
o Einführung in die Mineralogie und Mineralsystematik.
o Praktikum in Mineralbestimmen aufgrund makroskopischer Eigenschaften.
Literatur1. An Introduction to Mineral Sciences. (1992).
Andrew Putnis.
2. Kleber, W., Bautsch, H. J., and Bohm, J. (1998) – Einführung in die Kristallographie, Verlag Technik GmbH Berlin.
3. Minerals. (2004).
Hans-Rudolf Wenk, Andrei Bulakh
651-4143-00LGeobiologie Information O3 KP2VT. I. Eglinton
KurzbeschreibungWir studieren Spuren in der Lithosphäre, die Organismen im Verlaufe der Erdgeschichte hinterlassen haben und mineralische Bestandteile, die durch den Einfluss biologischer Prozesse gebildet oder als Quellen von Energie und Nährstoffen genutzt werden. Lebensspuren aus der Vergangenheit werden mit der Entwicklung der Vielfalt von Lebewesen in Zusammenhang gebracht
LernzielDie Lehrveranstaltung befähigt die Studierenden, Fragen über die Entstehung und die Entwicklung von Leben auf der Erde zu stellen, Hypothesen aufzugreifen und neue methodische Ansätze zu entwickeln. Diese werden mit Beobachtungen, Übungen und mathematischen Modellen überprüft. Die geobiologischen Grundlagen ermöglichen den Studierenden, Erkenntnisse, die ihnen in weiterführenden Lehrveranstaltungen vermittelt werden, in Fragestellungen zur Erdgeschichte einzuordnen. Sie lernen, die moderne geologische Umwelt besser zu verstehen und, wo nötig, biogeochemisch fundierte und verantwortungsvolle technische Eingriffe und Schutzmassnahmen zu empfehlen.
InhaltIm Mittelpunkt stehen erdgeschichtlich bedeutsame geobiochemische Zyklen in aquatischen und terrestrischen Ökosystemen, Biosynthesen und katabolische Prozesse, die Leben ermöglichen und die Organismen, die diese regulieren und geochemische Zyklen in Gang halten.
Dazu müssen wir verstehen
-- aus welchen Elementen und Molekülen biologische Zellen und deren Bestandteile aufgebaut sind,
-- wie Zellen funktionieren und welche Lebensweisen Organismen entwickelt haben,
-- wo welche Organismen existieren können und welche Faktoren ihr Vorkommen selektioniert,
-- woher biologisch verwertbare Energie stammt und wie sie unter verschiedenen Bedingungen genutzt werden kann,
-- wie biologischer Stoffwechsel Umweltveränderungen bewirkt,
-- welche Stoffwechselprodukte zu Signalen in Gesteinsarchiven führen können, wie sich Biomoleküle and Elemente nach deren Einlagerung in Sedimenten verhalten,
-- wie organische und anorganische Stoffe in der Biosphäre zyklisiert werden und nach welchen grundlegenden Prinzipien biogeochemische Kreisläufe funktionieren,
-- wie sich biologische "Innovationen" im Verlaufe der Zeit entwickelt, erhalten, und als Folge von Umweltveränderungen verändert haben.

Angewandte Fallstudien, welche die Inhalte ergänzen und illustrieren:
-- Wissenschaftliche Anwendungen geobiologischer Erkenntnisse finden wir in der Mikrobiellen Ökologie, der Geochemie, der Paläontologie, der Sedimentologie, der Petrologie, der Ozeanforschung, den Umweltwissenschaften, der Astrobiologie und der Archäologie.
-- Praktische Anwendungen aus der Geobiologie fliessen in die Bereiche Altlastensanierung, Schaffung von sicheren Deponien, Grundwasserüberwachung, Abwasserreinigung, Gewinning von und Prospektion für fossile Kohlenstoffreserven, Bodenwiederherstellung, Mineralienabbau und Laugung, Forensik und Geomedizin ein.
SkriptVorlesungsunterlagen, eine Liste mit empfohlenen Büchern, wissenschaftliche Artikel und Video Aufzeichnungen zu Teilbereichen sind in elektronischer Form auf der Arbeitswebseite im LMS OLAT aufgeschaltet. Zugang zu den Unterlagen bedingt, dass sich die Studierenden, die in MyStudies eingeschrieben sind, für den Kurs "Geobiology_17" in OLAT einloggen.
Link
LiteraturWird auf der Kurs-Internetseite im OLAT zur Verfügung gestellt.
Link
Voraussetzungen / BesonderesDie Veranstaltung baut auf den Inhalten der naturwissenschaftlichen Grundlagen-, Schwerpunkt- und Ergänzungsfächer der eidgenössischen Maturität auf (Richtlinien für die schweizerische Maturitätsprüfung, 2012).
Zur Repetition und Vertiefung werden vor Beginn des Geobiologie Kurses entsprechende Studienunterlagen (Videoclips) über die Arbeitswebseite im OLAT bekannt gemacht.
651-4271-00LErdwissenschaftliche Datenanalyse und Visualisierung mit MatlabO3 KP3GS. Wiemer, G. De Souza, T. Tormann
KurzbeschreibungDie Vorlesung und dazugehörige Übung geben den Studierenden eine Einführung in die Konzepte und Werkzeuge der wissenschaftlichen Datenanalyse. Anhand von praktischen erdwissenschaftlichen Problemstellungen werden in Kleingruppen und Einzelarbeit Aufgaben von wachsender Komplexität mit der Software MATLAB gelöst. Dabei lernen die Studierenden auch, Datensätze effektvoll zu visualisieren.
LernzielDie folgenden Konzepte werden vorgestellt:
- Effektvolle Datenanalyse und Visualisierung in 2D und 3D
- Arbeiten mit Matrizen und Arrays
- Programmieren und Algorithmenentwicklung
- Animationen sinnvoll einsetzen
- Einen Datensatz statistisch erfassen
- Interaktives Datamining
- Unsicherheiten, Fehlerfortpflanzung und Bootstrapping
- Regressionsanalysen
- Testen von Hypothesen
  •  Seite  1  von  1