Suchergebnis: Katalogdaten im Frühjahrssemester 2018

Chemieingenieurwissenschaften Bachelor Information
4. Semester
Obligatorische Fächer Prüfungsblock I
NummerTitelTypECTSUmfangDozierende
529-0122-00LInorganic Chemistry IIO3 KP3GM. Kovalenko
KurzbeschreibungDie Vorlesung vermittelt einen vertieften Umgang mit Symmetrieaspekten chemischer Systeme. Neben der beispielhaften Analyse molekularer Einheiten werden auch wichtige Änderungen, die typisch sind für Translationspolymere, bzw. Kristallstrukturen, eingeführt.
LernzielDie Vorlesung baut auf den Inhalten der Anorganischen Chemie I auf. Sie vermittelt einen vertieften Umgang mit Symmetrieaspekten chemischer Systeme. Neben der beispielhaften Analyse molekularer Einheiten werden auch wichtige Änderungen, die typisch sind für Translationspolymere, eingeführt.
InhaltSymmetriebestimmung von Molekülen, Punktgruppen und Darstellungen zur Herleitung von Molekülorbitalen, Energiebetrachtungen zu Molekülen und Feststoffen, Sanderson-Formalismus, Herleitung und Verständnis von Bandstrukturen, Zustandsdichten, Überlappungspopulationen, Symmetrie im Kristall, Grundtypen der Kristallstrukturen und zugehörige Stoffeigenschaften, visuelle Darstellungen von Kristallstrukturen.
Skriptauf Moodle
Literatur1. I. Hargittai, M. Hargittai, "Symmetry through the Eyes of a Chemist",Plenum Press, 1995; 2. R. Hoffmann, "Solids and Surfaces", VCH 1988; 3. U. Müller, "Anorganische Strukturchemie", 6. Auflage, Vieweg + Teubner 2008
Voraussetzungen / BesonderesVoraussetzung: Anorganische Chemie I
529-0222-00LOrganic Chemistry IIO3 KP2V + 1UJ. W. Bode, A. Fedorov
KurzbeschreibungDie Vorlesung vermittelt, aufbauend auf der Veranstaltung Organische Chemie I bzw. Organische Chemie II für D-BIOL, fortgeschrittene Konzepte und Mechanismen organischer Reaktionen. Neben einer Einführung in pericyclische Reaktionen und in den Bereich der metallorganischen Chemie, wird gezielt das Planen und Entwickeln von Syntheserouten komplexer organischer Moleküle erlernt.
LernzielDie Vorlesung setzt sich zum Ziel, neben der Vertiefung grundlegender organischer Reaktionen, fortgeschrittene Transformationen organischer Verbindungen (z.B. Mitsunobu Reaktion, Corey-Chaykovsky Epoxidation, Stetter Reaktion etc.) zu vermitteln. Des Weiteren, werden Grundkenntnisse in pericyclischen Reaktionen (z.B. Diels-Alder Reaktion, Claisen Umlagerung etc.) sowie im Bereich der metallorganischen Chemie (z.B. Kreuzkupplungsreaktionen) erworben. Ein wesentlicher Fokus wird dabei auf das ausgeprägte Verständnis von Reaktivität und Reaktionsmechanismen gelegt. Darüber hinaus werden neue Konzepte, wie beispielsweise die FMO Theorie, zur Vorhersage über den Verlauf und Ausgang einer Reaktion eingeführt. Aufbauend auf dem erlernten Repertoire an neuen organischen Reaktionen und dem besseren Verständnis für die Reaktivität organischer Moleküle werden retrosynthetische Analyseansätzen von komplexen organischen Molekülen und Naturstoffen vermittelt. Das anschließende Endziel der Vorlesung ist die eigenständige Planung und Entwicklung mehrstufiger Syntheserouten zur Herstellung komplexer organischer Moleküle.
InhaltOxidation und Reduktion organischer Verbindungen, redoxneutrale Reaktionen und Umlagerungen, fortgeschrittene Transformation funktioneller Gruppen und Reaktionsmechanismen, kinetische und thermodynamische Kontrolle von organisch-chemischen Reaktionen, Reaktivitäten von Carbenen und Nitrenen, Frontier Molekular Orbital (FMO) Theorie, Cycloadditionen und pericyclische Reaktionen, Einführung in die metallorganische Chemie, Kreuzkupplungsreaktionen, Einführung in die Peptidsynthese, Schutzgruppenchemie, Grundlagen der retrosynthetischen Analyse von komplexen organischen Molekülen, Planung mehrstufiger Synthesewege.
SkriptDas Vorlesungsskript sowie zusätzliche Beilagen mit ausführlichem und ergänzendem Inhalt zur Vorlesung werden als PDF Datei kostenlos online aufgeschaltet. Link: Link
LiteraturClayden, Greeves, and Warren. Organic Chemistry, 2nd Edition. Oxford University Press, 2012.
529-0431-00LPhysikalische Chemie III: Molekulare Quantenmechanik Belegung eingeschränkt - Details anzeigen O4 KP4GB. H. Meier, M. Ernst
KurzbeschreibungPostulate der Quantenmechanik, Operatorenalgebra, Schrödingergleichung, Zustandsfunktionen und Erwartungswerte, Matrixdarstellung von Operatoren, das Teilchen im Kasten, Tunnelprozess, harmonische Oszillator, molekulare Schwingungen, Drehimpuls und Spin, verallgemeinertes Pauli Prinzip, Störungstheorie, Variationsprinzip, elektronische Struktur von Atomen und Molekülen, Born-Oppenheimer Näherung.
LernzielEs handelt sich um eine erste Grundvorlesung in Quantenmechanik. Die Vorlesung beginnt mit einem Überblick über die grundlegenden Konzepte der Quantenmechanik und führt den mathematischen Formalismus ein. Im Folgenden werden die Postulate und Theoreme der Quantenmechanik im Kontext der experimentellen und rechnerischen Ermittlung von physikalischen Grössen diskutiert. Die Vorlesung vermittelt die notwendigen Werkzeuge für das Verständnis der elementaren Quantenphänomene in Atomen und Molekülen.
InhaltPostulate und Theoreme der Quantenmechanik: Operatorenalgebra, Schrödingergleichung, Zustandsfunktionen und Erwartungswerte. Lineare Bewegungen: Das freie Teilchen, das Teilchen im Kasten, quantenmechanisches Tunneln, der harmonische Oszillator und molekulare Schwingungen. Drehimpulse: Spin- und Bahnbewegungen, molekulare Rotationen. Elektronische Struktur von Atomen und Molekülen: Pauli-Prinzip, Drehimpulskopplung, Born-Oppenheimer Näherung. Grundlagen der Variations- und Störungtheorie. Behandlung grösserer Systeme (Festkörper, Nanostrukturen).
SkriptEin Vorlesungsskript in Deutsch wird abgegeben. Das Skipt ersetzt allerdings persönliche Notizen NICHT und deckt nicht alle Aspekte der Vorlesung ab.
402-0044-00LPhysik IIO4 KP3VT. Esslinger
KurzbeschreibungEinführung in die Denk- und Arbeitsweise in der Physik unter Zuhilfenahme von Demonstrationsexperimenten: Elektrizität und Magnetismus, Licht, Einführung in die Moderne Physik.
LernzielVermittlung der physikalischen Denk- und Arbeitsweise und Einführung in die Methoden in einer experimentellen Wissenschaft. Der Studenten/in soll lernen physikalische Fragestellungen im eigenen Wissenschaftsbereich zu identifizieren, zu kommunizieren und zu lösen.
InhaltElektrizität und Magnetismus (elektrischer Strom, Magnetfelder, magnetische Induktion, Magnetismus der Materie, Maxwellsche Gleichungen)
Optik (Licht, geometrische Optik, Interferenz und Beugung)
Kurze Einführung in die Quantenphysik
SkriptDie Vorlesung richtet sich nach dem Lehrbuch "Physik" von Paul A. Tipler
LiteraturPaul A. Tipler and Gene Mosca
Physik
Springer Spektrum Verlag
529-0058-00LAnalytische Chemie IIO3 KP3GD. Günther, T. Bucheli, M.‑O. Ebert, P. Lienemann, G. Schwarz
KurzbeschreibungVertiefung in den wichtigsten elementaranalytischen und spektroskopischen Methoden sowie ihrer Anwendung in der Praxis, aufbauend auf der Vorlesung Analytische Chemie I. Vorstellung der wichtigsten Trennmethoden.
LernzielPraxisnahe Anwendung und Vertiefung des spektroskopischen und elementaranalytischen Grundwissens der Vorlesung Analytische Chemie I.
InhaltPraxis des kombinierten Einsatzes spektroskopischer Methoden zur Strukturaufklärung und praktischer Einsatz elementaranalytischer Methoden. Komplexere NMR-Methoden: Aufnahmetechnik, analytisch-chemische Anwendungen von Austauschphänomenen, Doppelresonanz, Spin-Gitter-Relaxation, Kern-Overhauser-Effekt, analytisch-chemische Anwendungen der experimentellen 2D- und Multipuls-NMR-Spektroskopie, Verschiebungsreagenzien. Anwendung chromatographischer und elektrophoretischer Trennverfahren: Grundlagen, Arbeitstechnik, Beurteilung der Qualität eines Trennsystems, van-Deemter-Gleichung, Gaschromatographie, Flüssigchromatographie (HPLC, Ionenchromatographie, Gelpermeation, Packungsmaterialien, Gradientenelution, Retentionsindex), Elektrophorese, elektroosmotischer Fluss, Zonenelektrophorese, Kapillarelektrophorese, isoelektrische Fokussierung, Elektrochromatographie, 2D-Gelelektrophorese, SDS-PAGE, Field Flow Fractionation, Vertiefung in Atomabsorptions-Spektroskopie, Atomemissions-Spektroskopie und Röntgenfluoreszenz-Spektroskopie, ICP-OES, ICP-MS.
SkriptEin Skript wird zum Selbstkostenpreis abgegeben.
LiteraturLiteraturlisten werden in der Vorlesung verteilt.
Voraussetzungen / BesonderesÜbungen zur Spektreninterpretation und zu den Trennmethoden erfolgen im Rahmen der Vorlesung. Zusätzlich wird die Veranstaltung 529-0289-00 "Instrumentalanalyse organischer Verbindungen" (4. Semester) empfohlen.

Voraussetzung: 529-0051-00 "Analytische Chemie I (3. Semester)"
529-0625-00LChemieingenieurwissenschaftenO3 KP3GW. J. Stark
KurzbeschreibungDie Vorlesung Chemieingenieurwissenschaften vermittelt die Grundlagen zur Produktions- und Prozessplanung. Neben Reaktorenwahl, Reaktionsführung und Skalierung werden aktuelle Probleme grosstechnischer Prozesse und neue Syntheseverfahren behandelt. Heterogene Katalyse und Transport von Impuls, Masse und Energie verbindet den erarbeiteten Stoff mit der chemisch/biologischen Grundausbildung.
LernzielDie Vorlesung Chemie und Bio-Ingenieurwissenschaften im 4. Semester vermittelt Chemikern, Chemieingenieuren, Biochemikern und Biologen die Grundlagen zur Produktions- und Prozessplanung. Zuerst werden verschiedene Reaktoren, einzelne Prozess- und Verfahrensschritte sowie grosstechnische Aspekte von Chemikalien und Reagenzien eingeführt und anhand von aktuellen Produktionsbeispielen zusammengefügt. Betrachtungen im Bezug auf Materialverbrauch, Energiekosten und Nebenproduktbildung zeigen, wo modernes Engineering einen grossen Beitrag zur umweltfreundlichen Produktion leisten kann. In einem zweiten Teil werden chemische und biologische Vorgänge in Reaktoren, Zellen oder Lebewesen aus einer neuen Sichtweise behandelt. Transport von Impuls, Masse und Energie werden zusammen eingeführt und bilden eine Basis zum Verständnis von Strömungen, Diffusionsvorgängen und Wärmetransport. Mittels dimensionsloser Kennzahlen werden diese Transportvorgänge in die Planung der Produktion eingeführt und ein Ueberblick in die Grundoperationen der chemischen und biochemischen Industrie gegeben. Eine Einführung in heterogene Katalyse verbindet den erarbeiteten Stoff mit der chemisch/biologischen Basis und illustriert wie durch enges Zusammenspiel von Transport und Chemie/Biologie neue, sehr leistungsfähige Prozesse entwickelt werden können.
InhaltElemente einer chemischen Umsetzung: Vorbereitung der Ausgangsstoffe, Reaktionsführung, Aufarbeitung/Rückführung, Produktreinigung; Kontinuierliche, halbkontinuierliche und diskontinuierliche Prozesse; Materialbilanzen: Chemische Reaktoren und Trennprozesse, zusammengesetzte und mehrstufige Systeme; Energiebilanzen: Chemische Reaktoren und Trennprozesse, Enthalpieänderungen, gekoppelte Material- und Energiebilanzen; Zusammengesetzte Reaktionen: Optimierung der Reaktorleistung, Ausbeute und Selektivität; Stofftransport und chemische Reaktion: Mischungseffekte in homogenen und heterogenen Systemen, Diffusion und Reaktion in porösen Materialien; Wärmeaustausch und chemische Reaktion: Adiabatische Reaktoren, optimale Betriebsweise bei exothermen und endothermen Gleichgewichtsreaktionen, thermischer Runaway, Reaktordimensionierung und Massstabvergrösserung (scale up).
SkriptVorlesungsunterlagen können über die Homepage (Link) bezogen werden.
LiteraturLiteratur und Lehrbücher werden am Anfang der Vorlesung bekannt gegeben.
  •  Seite  1  von  1