Suchergebnis: Katalogdaten im Frühjahrssemester 2018

Hochenergie-Physik MSc (Joint Master mit EP Paris) Information
Physikalische und mathematische Wahlfächer
Wahlfächer in Physik
NummerTitelTypECTSUmfangDozierende
402-0714-00LAstro-Particle Physics II Information W6 KP2V + 1UA. Biland
KurzbeschreibungThis lecture focuses on the neutral components of the cosmic rays as well as on several aspects of Dark Matter. Main topics will be very-high energy astronomy and neutrino astronomy.
LernzielStudents know experimental methods to measure neutrinos as well as high energy and very high energy photons from extraterrestrial sources. They are aware of the historical development and the current state of the field, including major theories. Additionally, they understand experimental evidences about the existence of Dark Matter and selected Dark Matter theories.
Inhalta) short repetition about 'charged cosmic rays' (1st semester)
b) High Energy (HE) and Very-High Energy (VHE) Astronomy:
- ongoing and near-future detectors for (V)HE gamma-rays
- possible production mechanisms for (V)HE gamma-rays
- galactic sources: supernova remnants, pulsar-wind nebulae, micro-quasars, etc.
- extragalactic sources: active galactic nuclei, gamma-ray bursts, galaxy clusters, etc.
- the gamma-ray horizon and it's cosmological relevance
c) Neutrino Astronomy:
- atmospheric, solar, extrasolar and cosmological neutrinos
- actual results and near-future experiments
d) Dark Matter:
- evidence for existence of non-barionic matter
- Dark Matter models (mainly Supersymmetry)
- actual and near-future experiments for direct and indirect Dark Matter searches
SkriptSee: Link
LiteraturSee: Link
Voraussetzungen / BesonderesThis course can be attended independent of Astro-Particle Physics I.
402-0738-00LStatistical Methods and Analysis Techniques in Experimental PhysicsW10 KP5GM. Donegà, C. Grab
KurzbeschreibungThis lecture gives an introduction to the statistical methods and the various analysis techniques applied in experimental particle physics. The exercises treat problems of general statistical topics; they also include hands-on analysis projects, where students perform independent analyses on their computer, based on real data from actual particle physics experiments.
LernzielStudents will learn the most important statistical methods used in experimental particle physics. They will acquire the necessary skills to analyse large data records in a statistically correct manner. Learning how to present scientific results in a professional manner and how to discuss them.
InhaltTopics include:
- modern methods of statistical data analysis
- probability distributions, error analysis, simulation methos, hypothesis testing, confidence intervals, setting limits and introduction to multivariate methods.
- most examples are taken from particle physics.

Methodology:
- lectures about the statistical topics;
- common discussions of examples;
- exercises: specific exercises to practise the topics of the lectures;
- all students perform statistical calculations on (their) computers;
- students complete a full data analysis in teams (of two) over the second half of the course, using real data taken from particle physics experiments;
- at the end of the course, the students present their analysis results in a scientific presentation;
- all students are directly tutored by assistants in the classroom.
Skript- Copies of all lectures are available on the web-site of the course.
- A scriptum of the lectures is also available to all students of the course.
Literatur1) Statistics: A guide to the use of statistical medhods in the Physical Sciences, R.J.Barlow; Wiley Verlag .
2) J Statistical data analysis, G. Cowan, Oxford University Press; ISBN: 0198501552.
3) Statistische und numerische Methoden der Datenanalyse, V.Blobel und E.Lohrmann, Teubner Studienbuecher Verlag.
4) Data Analysis, a Bayesian Tutorial, D.S.Sivia with J.Skilling,
Oxford Science Publications.
Voraussetzungen / BesonderesBasic knowlege of nuclear and particle physics are prerequisites.
402-0895-00LThe Standard Model of Electroweak Interactions
Fachstudierende UZH müssen das Modul PHY563 direkt an der UZH buchen.
W6 KP2V + 1UA. Gehrmann-De Ridder
KurzbeschreibungTopics to be covered:
A) Electroweak theory
- Spontaneous symmetry breaking and the Higgs mechanism
- The electroweak Standard Model Lagrangian
B) Flavour Physics
-Flavour oscillations
-The neutral kaon system
-Neutrino Physics
C) Higgs Physics phenomenology
-Higgs boson production and decay at LHC
D) Electroweak corrections
-Determination of Standard Model parameters
LernzielAn introduction to modern theoretical particle physics
LiteraturAs described in the entity: Lernmaterialien
Voraussetzungen / BesonderesKnowledge of Quantum Field Theory I is required.
Parallel following of Quantum Field Theory II is recommended.
402-0886-00LIntroduction to Quantum ChromodynamicsW6 KP2V + 1UA. Lazopoulos
KurzbeschreibungIntroduction to the theoretical aspects of Quantum Chromodynamics, the theory of strong interactions.
LernzielStudents that complete the course will be able to explain the fundamentals of QCD, to quantitatively discuss the ultraviolet and infrared behaviour of the theory, to perform simple calculations and to understand modern publications on this research field.
InhaltThe following topics will be covered:
- QCD Lagrangian and Feynman rules
- Ultraviolet behaviour of QCD: running QCD coupling and asymptotic freedom
- Infrared behaviour and jets
- The parton model and Altarelli-Parisi equations
- Resummation, parton showers and QCD simulations
SkriptWill be provided at the Moodle site for the course.
LiteraturWill be provided at the Moodle site for the course.
Voraussetzungen / BesonderesQFT I : A working knowledge of Quantum Field Theory I, at the level of easily performing tree-level computations with Feynman diagrams given the Feynman rules, is assumed.
402-0703-00LPhenomenology of Physics Beyond the Standard Model Information W6 KP2V + 1UM. Spira, L. Shchutska
KurzbeschreibungAfter a short introduction to the theoretical foundations and experimental tests of the standard model, supersymmetry, leptoquarks, and extra dimensions will be treated among other topics. Thereby the phenomenological aspect, i. e., the search for new particles and interactions at existing and future particle accelerators will play a significant role.
LernzielThe goal of the lecture is the introduction into several theoretical concepts that provide solutions for the open questions of the Standard Model of particle physics and thus lead to physics beyond the Standard Model.

Besides the theoretical concepts the phenomenological aspect plays a role, i.e. the search for new particles and interactions at the existing and future particle accelerators plays a crucial role.
Inhaltsee home page: Link
Skriptsee home page: Link
Voraussetzungen / BesonderesWill be taught in German only if all students understand German.
402-0394-00LTheoretical Astrophysics and Cosmology
Studierende der UZH dürfen diese Lerneinheit nicht an der ETH belegen, sondern müssen das entsprechende Modul direkt an der UZH buchen.
W10 KP4V + 2UL. M. Mayer, J. Yoo
KurzbeschreibungThis is the second of a two course series which starts with "General Relativity" and continues in the spring with "Theoretical Astrophysics and Cosmology", where the focus will be on applying general relativity to cosmology as well as developing the modern theory of structure formation in a cold dark matter Universe.
Lernziel
InhaltThe course will cover the following topics:
- Homogeneous cosmology
- Thermal history of the universe, recombination, baryogenesis and nucleosynthesis
- Dark matter and Dark Energy
- Inflation
- Perturbation theory: Relativistic and Newtonian
- Model of structure formation and initial conditions from Inflation
- Cosmic microwave background anisotropies
- Spherical collapse and galaxy formation
- Large scale structure and cosmological probes
LiteraturSuggested textbooks:
H.Mo, F. Van den Bosch, S. White: Galaxy Formation and Evolution
S. Carroll: Space-Time and Geometry: An Introduction to General Relativity
S. Dodelson: Modern Cosmology
Secondary textbooks:
S. Weinberg: Gravitation and Cosmology
V. Mukhanov: Physical Foundations of Cosmology
E. W. Kolb and M. S. Turner: The Early Universe
N. Straumann: General relativity with applications to astrophysics
A. Liddle and D. Lyth: Cosmological Inflation and Large Scale Structure
Voraussetzungen / BesonderesKnowledge of General Relativity is recommended.
402-0883-63LSymmetries in PhysicsW4 KP2VN. Beisert
KurzbeschreibungThe course gives an introduction to symmetry groups in physics. It explains the relevant mathematical background (finite groups, Lie groups and algebras as well as their representations), and illustrates their important role in modern physics.
LernzielThe aim of the course is to give a self-contained introduction into finite group theory as well as Lie theory from a physicists point of view. Abstract mathematical constructions will be illustrated with examples from physics.
Inhaltsymmetries in two and three dimensions, groups and representations, finite group theory, point and space groups, structure of simple Lie algebras, finite-dimensional representations; advanced topics such as: representations of SU(N), classification of simple Lie algebras, conformal symmetry
402-0883-18LExercises in Symmetries in PhysicsW2 KP1GN. Beisert
KurzbeschreibungThe course supplements an introductory lecture to symmetry groups in physics. It practices and deepens the mathematical background and applications in physics by working out and discussing homework exercises. Quiz problems in class will test familiarity with conceptual questions. Particular issues of the lecture can be discussed in more detail.
LernzielThe aim of the course is to obtain a solid foundation in techniques for and concepts of finite group theory and Lie theory. Participants will practice performing computations and derivations in this topic and learn to apply the relevant methods to physics problems.
Inhaltsymmetries in two and three dimensions, groups and representations, finite group theory, point and space groups, structure of simple Lie algebras, finite-dimensional representations; advanced topics such as: representations of SU(N), classification of simple Lie algebras, conformal symmetry
Voraussetzungen / BesonderesThis course is based on the contents of the lecture 402-0883-63V Symmetries in Physics which should be attended in parallel
402-0848-00LAdvanced Field Theory Information
Fachstudierende UZH müssen das Modul PHY572 direkt an der UZH buchen.
W6 KP2V + 1UT. K. Gehrmann
KurzbeschreibungThe course treats the following topics in quantum field theory:

-Chiral symmetry and chiral perturbation theory
-Effective field Theories
-Axial anomaly
-Topological objects in Field Theory and the early universe
LernzielThe course aims to provide an introduction to selected advanced topics in Quantum Field Theory.
Voraussetzungen / BesonderesPrerequisite: Quantum Field Theory I

Recommended: Quantum Field Theory II (to be attended in parallel)

Course homepage: Link
402-0778-00LParticle Accelerator Physics and Modeling IIW6 KP2V + 1UA. Adelmann
KurzbeschreibungThe effect of nonlinearities on the beam dynamics of charged particles will be discussed. For the nonlinear beam transport, Lie-Methods in combination with differential algebra (DA) and truncated power series (TPS) will be introduced. In the second part we will discuss advanced concepts such as laser plasma wakefield acceleration.
LernzielModel for nonlinear beam dynamics can be applied to new or existing particle accelerators. Some of the most important papers in the field are discussed (as part of the exercises).

Advanced accelerator concepts are analysed and a toy model of a
laser plasma wakefield accelerator is developed.
Inhalt- Symplectic Maps and Higher Order Beam Dynamics
- Taylor Modells and Differential Algebra
- Lie Methods
- Normal Forms
- Coulomb Repulsion (Space Charge) as N-Body Problem
- Coherent Synchrotron Radiation
- Particle Collisions
- Laser Plasma Wakefield Acceleration
SkriptLecture notes
Literatur* Beam Dynamics - A New Attitude and Framework
E. Forest

* Modern Map Methods in Particle Beam Physics
M. Berz (Link)
Voraussetzungen / BesonderesIdeally Particle Accelerator Physics and Modelling 1 (PAM-1), however at the beginning of the semester, a crash course is offered introducing the minimum level of particle accelerator modeling needed to follow. This lecture is also suited for PhD. Students.
  •  Seite  1  von  1