Search result: Catalogue data in Spring Semester 2018

Micro- and Nanosystems Master Information
Core Courses
Recommended Core Courses
Devices and Systems
151-0172-00LMicrosystems II: Devices and Applications Information W6 credits3V + 3UC. Hierold, C. I. Roman
AbstractThe students are introduced to the fundamentals and physics of microelectronic devices as well as to microsystems in general (MEMS). They will be able to apply this knowledge for system research and development and to assess and apply principles, concepts and methods from a broad range of technical and scientific disciplines for innovative products.
ObjectiveThe students are introduced to the fundamentals and physics of microelectronic devices as well as to microsystems in general (MEMS), basic electronic circuits for sensors, RF-MEMS, chemical microsystems, BioMEMS and microfluidics, magnetic sensors and optical devices, and in particular to the concepts of Nanosystems (focus on carbon nanotubes), based on the respective state-of-research in the field. They will be able to apply this knowledge for system research and development and to assess and apply principles, concepts and methods from a broad range of technical and scientific disciplines for innovative products.

During the weekly 3 hour module on Mondays dedicated to Übungen the students will learn the basics of Comsol Multiphysics and utilize this software to simulate MEMS devices to understand their operation more deeply and optimize their designs.
ContentTransducer fundamentals and test structures
Pressure sensors and accelerometers
Resonators and gyroscopes
Acoustic transducers and energy harvesters
Thermal transducers and energy harvesters
Optical and magnetic transducers
Chemical sensors and biosensors, microfluidics and bioMEMS
Nanosystem concepts
Basic electronic circuits for sensors and microsystems
Lecture notesHandouts (on-line)
227-0662-00LOrganic and Nanostructured Optics and Electronics Information
Does not take place this semester.
W6 credits4GV. Wood
AbstractThis course examines the optical and electronic properties of excitonic materials that can be leveraged to create thin-film light emitting devices and solar cells. Laboratory sessions provide students with experience in synthesis and optical characterization of nanomaterials as well as fabrication and characterization of thin film devices.
ObjectiveGain the knowledge and practical experience to begin research with organic or nanostructured materials and understand the key challenges in this rapidly emerging field.
Content0-Dimensional Excitonic Materials (organic molecules and colloidal quantum dots)

Energy Levels and Excited States (singlet and triplet states, optical absorption and luminescence).

Excitonic and Polaronic Processes (charge transport, Dexter and Förster energy transfer, and exciton diffusion).

Devices (photodetectors, solar cells, and light emitting devices).
LiteratureLecture notes and reading assignments from current literature to be posted on website.
Prerequisites / NoticeCourse grade will be based on a final project.
Energy Conversion and Quantum Phenomena
151-0060-00LThermodynamics and Energy Conversion in Micro- and Nanoscale TechnologiesW4 credits2V + 2UD. Poulikakos, H. Eghlidi, T. Schutzius
AbstractThe lecture deals with both: the thermodynamics in nano- and microscale systems and the thermodynamics of ultra-fast phenomena. Typical areas of applications are microelectronics manufacturing and cooling, laser technology, manufacturing of novel materials and coatings, surface technologies, wetting phenomena and related technologies, and micro- and nanosystems and devices.
ObjectiveThe student will acquire fundamental knowledge of micro and nanoscale interfacial thermofluidics including light interaction with surfaces. Furthermore, the student will be exposed to a host of applications ranging from superhydrophobic surfaces and microelectronics cooling to biofluidics and solar energy, all of which will be discussed in the context of the course.
ContentThermodynamic aspects of intermolecular forces, Molecular dynamics; Interfacial phenomena; Surface tension; Wettability and contact angle; Wettability of Micro/Nanoscale textured surfaces: superhydrophobicity and superhydrophilicity.

Physics of micro- and nanofluidics.

Principles of electrodynamics and optics; Optical waves at interfaces; Plasmonics: principles and applications.
Lecture notesyes
402-0468-15LNanomaterials for Photonics Information W6 credits2V + 1UR. Grange
AbstractThe lecture describes various nanomaterials (semiconductor, metal, dielectric, carbon-based...) for photonic applications (optoelectronics, plasmonics, photonic crystal...). It starts with nanophotonic concepts of light-matter interactions, then the fabrication methods, the optical characterization techniques, the description of the properties and the state-of-the-art applications.
ObjectiveThe students will acquire theoretical and experimental knowledge in the different types of nanomaterials (semiconductors, metals, dielectric, carbon-based, ...) and their uses as building blocks for advanced applications in photonics (optoelectronics, plasmonics, photonic crystal, ...). Together with the exercises, the students will learn (1) to read, summarize and discuss scientific articles related to the lecture, (2) to estimate order of magnitudes with calculations using the theory seen during the lecture, (3) to prepare a short oral presentation about one topic related to the lecture, and (4) to imagine a useful photonic device.
Content1. Introduction to Nanomaterials for photonics
a. Classification of the materials in sizes and speed...
b. General info about scattering and absorption
c. Nanophotonics concepts

2. Analogy between photons and electrons
a. Wavelength, wave equation
b. Dispersion relation
c. How to confine electrons and photons
d. Tunneling effects

3. Characterization of Nanomaterials
a. Optical microscopy: Bright and dark field, fluorescence, confocal, High resolution: PALM (STORM), STED
b. Electron microscopy : SEM, TEM
c. Scanning probe microscopy: STM, AFM
d. Near field microscopy: SNOM
e. X-ray diffraction: XRD, EDS

4. Generation of Nanomaterials
a. Top-down approach
b. Bottom-up approach

5. Plasmonics
a. What is a plasmon, Drude model
b. Surface plasmon and localized surface plasmon (sphere, rod, shell)
c. Theoretical models to calculate the radiated field: electrostatic approximation and Mie scattering
d. Fabrication of plasmonic structures: Chemical synthesis, Nanofabrication
e. Applications

6. Organic nanomaterials
a. Organic quantum-confined structure: nanomers and quantum dots.
b. Carbon nanotubes: properties, bandgap description, fabrication
c. Graphene: motivation, fabrication, devices

7. Semiconductors
a. Crystalline structure, wave function...
b. Quantum well: energy levels equation, confinement
c. Quantum wires, quantum dots
d. Optical properties related to quantum confinement
e. Example of effects: absorption, photoluminescence...
f. Solid-state-lasers : edge emitting, surface emitting, quantum cascade

8. Photonic crystals
a. Analogy photonic and electronic crystal, in nature
b. 1D, 2D, 3D photonic crystal
c. Theoretical modeling: frequency and time domain technique
d. Features: band gap, local enhancement, superprism...

9. Optofluidic
a. What is optofluidic ?
b. History of micro-nano-opto-fluidic
c. Basic properties of fluids
d. Nanoscale forces and scale law
e. Optofluidic: fabrication
f. Optofluidic: applications
g. Nanofluidics

10. Nanomarkers
a. Contrast in imaging modalities
b. Optical imaging mechanisms
c. Static versus dynamic probes
Lecture notesSlides and book chapter will be available for downloading
LiteratureReferences will be given during the lecture
Prerequisites / NoticeBasics of solid-state physics (i.e. energy bands) can help
402-0596-00LElectronic Transport in Nanostructures Information W6 credits2V + 1UT. M. Ihn
AbstractThe lecture discusses basic quantum phenomena occurring in electron transport through nanostructures: Drude theory, Landauer-Buttiker theory, conductance quantization, Aharonov-Bohm effect, weak localization/antilocalization, shot noise, integer and fractional quantum Hall effects, tunneling transport, Coulomb blockade, coherent manipulation of charge- and spin-qubits.
Lecture notesThe lecture is based on the book:
T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport, ISBN 978-0-19-953442-5, Oxford University Press, 2010.
Prerequisites / NoticeA solid basis in quantum mechanics, electrostatics, quantum statistics and in solid state physics is required.

Students of the Master in Micro- and Nanosystems should at least have attended the lecture by David Norris, Introduction to quantum mechanics for engineers. They should also have passed the exam of the lecture Semiconductor Nanostructures.
529-0431-00LPhysical Chemistry III: Molecular Quantum Mechanics Restricted registration - show details W4 credits4GB. H. Meier, M. Ernst
AbstractPostulates of quantum mechanics, operator algebra, Schrödinger's equation, state functions and expectation values, matrix representation of operators, particle in a box, tunneling, harmonic oscillator, molecular vibrations, angular momentum and spin, generalised Pauli principle, perturbation theory, electronic structure of atoms and molecules, Born-Oppenheimer approximation.
ObjectiveThis is an introductory course in quantum mechanics. The course starts with an overview of the fundamental concepts of quantum mechanics and introduces the mathematical formalism. The postulates and theorems of quantum mechanics are discussed in the context of experimental and numerical determination of physical quantities. The course develops the tools necessary for the understanding and calculation of elementary quantum phenomena in atoms and molecules.
ContentPostulates and theorems of quantum mechanics: operator algebra, Schrödinger's equation, state functions and expectation values. Linear motions: free particles, particle in a box, quantum mechanical tunneling, the harmonic oscillator and molecular vibrations. Angular momentum: electronic spin and orbital motion, molecular rotations. Electronic structure of atoms and molecules: the Pauli principle, angular momentum coupling, the Born-Oppenheimer approximation. Variational principle and perturbation theory. Discussion of bigger systems (solids, nano-structures).
Lecture notesA script written in German will be distributed. The script is, however, no replacement for personal notes during the lecture and does not cover all aspects discussed.
Material, Surfaces and Properties
151-0902-00LMicro- and Nanoparticle TechnologyW6 credits2V + 2US. E. Pratsinis, K. Wegner, M. Eggersdorfer
AbstractIntroduction to fundamentals of micro- and nanoparticle synthesis and processing. Characterization of suspensions, sampling and measuring techniques; basics of gas-solid and liquid-solid systems; fragmentation, coagulation, growth, separation, fluidization, filtration, mixing, transport, coatings. Particle processing in manufacture of catalysts, sensors, nanocomposites and chemical commodities.
ObjectiveIntroduction to design methods of mechanical processes, scale-up laws and optimal use of materials and energy
ContentCharacterisation of particle suspensions and corresponding measuring techniques; basic laws of gas / solids resp. Liquid / solids systems; unit operations of mechanical processing:
desintegration, agglomeration, screening, air classifying, sedimentation, filtration, particle separation from gas streams, mixing, pneumatic conveying. Synthesis of unit operations to process systems in chemical industry, cement industry etc.
Lecture notesMechanical Process Engineering I
Modelling and Simulation
401-3632-00LComputational StatisticsW10 credits3V + 2UM. H. Maathuis
AbstractComputational Statistics deals with modern statistical methods of data analysis (aka "data science") for prediction and inference. The course provides an overview of existing methods. The course is hands-on, and methods are applied using the statistical programming language R.
ObjectiveIn this class, the student obtains an overview of modern statistical methods for data analysis, including their algorithmic aspects and theoretical properties. The methods are applied using the statistical programming language R.
ContentSee the class website
Prerequisites / NoticeAt least one semester of (basic) probability and statistics.

Programming experience is helpful but not required.
151-0116-10LHigh Performance Computing for Science and Engineering (HPCSE) for Engineers II Information W4 credits4GP. Koumoutsakos, P. Chatzidoukas
AbstractThis course focuses on programming methods and tools for parallel computing on multi and many-core architectures. Emphasis will be placed on practical and computational aspects of Uncertainty Quantification and Propagation including the implementation of relevant algorithms on HPC architectures.
ObjectiveThe course will teach
- programming models and tools for multi and many-core architectures
- fundamental concepts of Uncertainty Quantification and Propagation (UQ+P) for computational models of systems in Engineering and Life Sciences
ContentHigh Performance Computing:
- Advanced topics in shared-memory programming
- Advanced topics in MPI
- GPU architectures and CUDA programming

Uncertainty Quantification:
- Uncertainty quantification under parametric and non-parametric modeling uncertainty
- Bayesian inference with model class assessment
- Markov Chain Monte Carlo simulation
Lecture notes
Class notes, handouts
Literature- Class notes
- Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein
- CUDA by example, J. Sanders and E. Kandrot
- Data Analysis: A Bayesian Tutorial, Devinderjit Sivia
Laboratory Course
151-0620-00LEmbedded MEMS LabW5 credits3PC. Hierold, S. Blunier, M. Haluska
AbstractPractical course: Students are introduced to the process steps required for the fabrication of MEMS (Micro Electro Mechanical System) and carry out the fabrication and testing steps in the clean rooms themselves. Additionally, they learn the requirements for working in clean rooms. Processing and characterization will be documented and analyzed in a final report.
ObjectiveStudents learn the individual process steps that are required to make a MEMS (Micro Electro Mechanical System). Students carry out the process steps themselves in laboratories and clean rooms. Furthermore, participants become familiar with the special requirements (cleanliness, safety, operation of equipment and handling hazardous chemicals) of working in the clean rooms and laboratories. The entire production, processing, and characterization of the MEMS is documented and evaluated in a final report.
ContentWith guidance from a tutor, the individual silicon microsystem process steps that are required for the fabrication of an accelerometer are carried out:
- Photolithography, dry etching, wet etching, sacrificial layer etching, various cleaning procedures
- Packaging and electrical connection of a MEMS device
- Testing and characterization of the MEMS device
- Written documentation and evaluation of the entire production, processing and characterization
Lecture notesA document containing theory, background and practical course content is distributed in the informational meeting.
LiteratureThe document provides sufficient information for the participants to successfully participate in the course.
Prerequisites / NoticeParticipating students are required to attend all scheduled lectures and meetings of the course.

Participating students are required to provide proof that they have personal accident insurance prior to the start of the laboratory portion of the course.

This master's level course is limited to 15 students per semester for safety and efficiency reasons.
If there are more than 15 students registered, we regret to restrict access to this course by the following rules:

Priority 1: master students of the master's program in "Micro and Nanosystems"

Priority 2: master students of the master's program in "Mechanical Engineering" with a specialization in Microsystems and Nanoscale Engineering (MAVT-tutors Profs Dual, Hierold, Koumoutsakos, Nelson, Norris, Park, Poulikakos, Pratsinis, Stemmer), who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 3: master students, who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 4: all other students (PhD, bachelor, master) with a background in silicon or microsystems process technology.

If there are more students in one of these priority groups than places available, we will decide (in following order) best achieved grade from 151-0621-00L Microsystems Technology, registration to this practicum at previous semester, and by drawing lots.
Students will be notified at the first lecture of the course (introductory lecture) as to whether they are able to participate.

The course is offered in autumn and spring semester.
  •  Page  1  of  1