Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

Suchergebnis: Katalogdaten im Herbstsemester 2018

Rechnergestützte Wissenschaften Bachelor Information
Bachelor-Studium (Studienreglement 2018)
Obligatorische Fächer des Basisjahres
Basisprüfungsblock 1
NummerTitelTypECTSUmfangDozierende
401-0151-00LLineare Algebra Information O5 KP3V + 2UV. C. Gradinaru
KurzbeschreibungInhalt: Lineare Gleichungssysteme - der Algorithmus von Gauss, Matrizen - LR-Zerlegung, Determinanten, Vektorräume, Ausgleichsrechnung - QR-Zerlegung, Lineare Abbildungen, Eigenwertproblem, Normalformen -Singulärwertzerlegung; numerische Aspekte; Einführung in MATLAB.
LernzielEinführung in die Lineare Algebra für Ingenieure unter Berücksichtigung numerischer Aspekte
SkriptK. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002
LiteraturK. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002
252-0025-00LDiskrete Mathematik Information O7 KP4V + 2UU. Maurer
KurzbeschreibungInhalt: Mathematisches Denken und Beweise, Abstraktion. Mengen, Relationen (z.B. Aequivalenz- und Ordnungsrelationen), Funktionen, (Un-)abzählbarkeit, Zahlentheorie, Algebra (Gruppen, Ringe, Körper, Polynome, Unteralgebren, Morphismen), Logik (Aussagen- und Prädikatenlogik, Beweiskalküle).
LernzielHauptziele der Vorlesung sind (1) die Einführung der wichtigsten Grundbegriffe der diskreten Mathematik, (2) das Verständnis der Rolle von Abstraktion und von Beweisen und (3) die Diskussion einiger Anwendungen, z.B. aus der Kryptographie, Codierungstheorie und Algorithmentheorie.
InhaltSiehe Kurzbeschreibung.
Skriptvorhanden (englisch)
252-0856-00LInformatik Information O4 KP2V + 2UF. O. Friedrich, M. Schwerhoff
KurzbeschreibungDie Vorlesung bietet eine Einführung in das Programmieren mit einem Fokus auf systematischem algorithmischem Problemlösen. Lehrsprache ist C++. Es wird keine Programmiererfahrung vorausgesetzt.
LernzielPrimäres Lernziel der Vorlesung ist die Befähigung zum Programmieren mit C++. Studenten beherrschen nach erfolgreichem Abschluss der Vorlesung die Mechanismen zum Erstellen eines Programms, sie kennen die fundamentalen Kontrollstrukturen, Datenstrukturen und verstehen, wie man ein algorithmisches Problem in ein Programm abbildet. Sie haben eine Vorstellung davon, was "hinter den Kulissen" passiert, wenn ein Programm übersetzt und ausgeführt wird.
Sekundäre Lernziele der Vorlesung sind das Computer-basierte, algorithmische Denken, Verständnis der Möglichkeiten und der Grenzen der Programmierung und die Vermittlung der Denkart eines Computerwissenschaftlers.
InhaltWir behandeln fundamentale Datentypen, Ausdrücke und Anweisungen, (Grenzen der) Computerarithmetik, Kontrollanweisungen, Funktionen, Felder, zusammengesetze Strukturen und Zeiger. Im Teil zur Objektorientierung werden Klassen, Vererbung und Polymorhpie behandelt, es werden exemplarisch einfache dynamische Datentypen eingeführt.
Die Konzepte der Vorlesung werden jeweils durch Algorithmen und Anwendungen motiviert und illustriert.
SkriptEin Skript in englischer Sprache wird semesterbegleitend herausgegeben. Das Skript und die Folien werden auf der Vorlesungshomepage zum Herunterladen bereitgestellt.
LiteraturBjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
Stephen Prata: C++ Primer Plus, Sixth Edition, Addison Wesley, 2012
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000.
Basisprüfungsblock 2
NummerTitelTypECTSUmfangDozierende
401-0231-10LAnalysis 1
Studierende im BSc EEIT können alternativ auch 401-1261-07L Analysis I (für BSc Mathematik, BSc Physik und BSc IN (phys.-chem. Fachrichtung)) belegen und den zugehörigen Jahreskurs prüfen lassen. Studierende im BSc EEIT, welche 401-1261-07L/401-1262-07L Analysis I/II anstelle von 401-0231-10L/401-0232-10L Analysis 1/2 belegen möchten, wenden sich vor der Belegung an ihren Studiengang.
O8 KP4V + 3UA. Iozzi
KurzbeschreibungReelle und komplexe Zahlen, Vektoren, Grenzwerte, Folgen, Reihen, Potenzreihen, stetige Abbildungen, Differential- und Integralrechnung einer Variablen, Einführung in gewöhnliche Differentialgleichungen
LernzielEinfuehrung in die Grundlagen der Analysis
SkriptChristian Blatter: Ingenieur-Analysis (Kapitel 1-3)
Skript der Vorlesung (A. Iozzi)
Konrad Koenigsberger, Analysis I.
402-0043-00LPhysik IO4 KP3V + 1UJ. Home
KurzbeschreibungEinführung in die Denk- und Arbeitsweise in der Physik unter Zuhilfenahme von Demonstrationsexperimenten: Mechanik von Massenpunkten und starren Körpern, Schwingungen und Wellen.
LernzielVermittlung der physikalischen Denk- und Arbeitsweise und Einführung in die Methoden in einer experimentellen Wissenschaft. Die Studenten und Studentinnen soll lernen, physikalische Fragestellungen im eigenen Wissenschaftsbereich zu identifizieren, zu kommunizieren und zu lösen.
InhaltMechanik (Bewegung, Newtonsche Axiome, Arbeit und Energie, Impulserhaltung, Drehbewegungen, Gravitation, deformierbare Körper)
Schwingungen und Wellen (Schwingungen, mechanische Wellen, Akustik)
SkriptDie Vorlesung richtet sich nach dem Lehrbuch "Physik" von Paul A. Tipler.
LiteraturTipler, Paul A., Mosca, Gene, Physik (für Wissenschaftler und Ingenieure), Springer Spektrum
Grundlagenfächer
Block G1
NummerTitelTypECTSUmfangDozierende
401-0353-00LAnalysis III Information O4 KP2V + 2UA. Figalli
KurzbeschreibungIn this lecture we treat problems in applied analysis. The focus lies on the solution of quasilinear first order PDEs with the method of characteristics, and on the study of three fundamental types of partial differential equations of second order: the Laplace equation, the heat equation, and the wave equation.
LernzielThe aim of this class is to provide students with a general overview of first and second order PDEs, and teach them how to solve some of these equations using characteristics and/or separation of variables.
Inhalt1.) General introduction to PDEs and their classification (linear, quasilinear, semilinear, nonlinear / elliptic, parabolic, hyperbolic)

2.) Quasilinear first order PDEs
- Solution with the method of characteristics
- COnservation laws

3.) Hyperbolic PDEs
- wave equation
- d'Alembert formula in (1+1)-dimensions
- method of separation of variables

4.) Parabolic PDEs
- heat equation
- maximum principle
- method of separation of variables

5.) Elliptic PDEs
- Laplace equation
- maximum principle
- method of separation of variables
- variational method
LiteraturY. Pinchover, J. Rubinstein, "An Introduction to Partial Differential Equations", Cambridge University Press (12. Mai 2005)
Voraussetzungen / BesonderesPrerequisites: Analysis I and II, Fourier series (Complex Analysis)
401-0647-00LIntroduction to Mathematical OptimizationO5 KP2V + 1UD. Adjiashvili
KurzbeschreibungIntroduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering.
LernzielThe goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.
InhaltTopics covered in this course include:
- Linear programming (simplex method, duality theory, shadow prices, ...).
- Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...).
- Modelling with mathematical optimization: applications of mathematical programming in engineering.
LiteraturInformation about relevant literature will be given in the lecture.
Voraussetzungen / BesonderesThis course is meant for students who did not already attend the course "Mathematical Optimization", which is a more advance lecture covering similar topics. Compared to "Mathematical Optimization", this course has a stronger focus on modeling and applications.
401-0663-00LNumerical Methods for CSE Information O8 KP4V + 2U + 1PR. Alaifari
KurzbeschreibungThe course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.
Lernziel* Knowledge of the fundamental algorithms in numerical mathematics
* Knowledge of the essential terms in numerical mathematics and the
techniques used for the analysis of numerical algorithms
* Ability to choose the appropriate numerical method for concrete problems
* Ability to interpret numerical results
* Ability to implement numerical algorithms afficiently
Inhalt1. Direct Methods for linear systems of equations
2. Least Squares Techniques
3. Data Interpolation and Fitting
4. Filtering Algorithms
8. Approximation of Functions
9. Numerical Quadrature
10. Iterative Methods for non-linear systems of equations
11. Single Step Methods for ODEs
12. Stiff Integrators
SkriptLecture materials (PDF documents and codes) will be made available to the participants through the course web page:
https://metaphor.ethz.ch/x/2018/hs/401-0663-00L/
LiteraturU. ASCHER AND C. GREIF, A First Course in Numerical Methods, SIAM, Philadelphia, 2011.

A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical mathematics, vol. 37 of Texts in Applied Mathematics, Springer, New York, 2000.

W. Dahmen, A. Reusken "Numerik für Ingenieure und Naturwissenschaftler", Springer 2006.

M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002

P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002
Voraussetzungen / BesonderesThe course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves.
Block G2
NummerTitelTypECTSUmfangDozierende
401-0603-00LStochastik Information O4 KP2V + 1UM. H. Maathuis
KurzbeschreibungDie Vorlesung deckt folgende Themenbereiche ab: Zufallsvariablen, Wahrscheinlichkeit und Wahrscheinlichkeitsverteilungen, gemeinsame und bedingte Wahrscheinlichkeiten und Verteilungen, das Gesetz der Grossen Zahlen, der zentrale Grenzwertsatz, deskriptive Statistik, schliessende Statistik, Statistik bei normalverteilten Daten, Punktschätzungen, und Vergleich zweier Stichproben.
LernzielKenntnis der Grundlagen der Wahrscheinlichkeitstheorie und Statistik.
InhaltEinführung in die Wahrscheinlichkeitstheorie, einige Grundbegriffe der mathematischen Statistik und Methoden der angewandten Statistik.
SkriptVorlesungsskript
LiteraturVorlesungsskript
402-0811-00LProgramming Techniques for Scientific Simulations IO5 KP4GR. Käppeli
KurzbeschreibungThis lecture provides an overview of programming techniques for scientific simulations. The focus is on advances C++ programming techniques and scientific software libraries. Based on an overview over the hardware components of PCs and supercomputer, optimization methods for scientific simulation codes are explained.
Lernziel
252-0061-00LSystems Programming and Computer Architecture Information O7 KP4V + 2UT. Roscoe
KurzbeschreibungIntroduction to systems programming. C and assembly language,
floating point arithmetic, basic translation of C into assembler,
compiler optimizations, manual optimizations. How hardware features
like superscalar architecture, exceptions and interrupts, caches,
virtual memory, multicore processors, devices, and memory systems
function and affect correctness, performance, and optimization.
LernzielThe course objectives are for students to:

1. Develop a deep understanding of, and intuition about, the execution
of all the layers (compiler, runtime, OS, etc.) between programs in
high-level languages and the underlying hardware: the impact of
compiler decisions, the role of the operating system, the effects
of hardware on code performance and scalability, etc.

2. Be able to write correct, efficient programs on modern hardware,
not only in C but high-level languages as well.

3. Understand Systems Programming as a complement to other disciplines
within Computer Science and other forms of software development.

This course does not cover how to design or build a processor or
computer.
InhaltThis course provides an overview of "computers" as a
platform for the execution of (compiled) computer programs. This
course provides a programmer's view of how computer systems execute
programs, store information, and communicate. The course introduces
the major computer architecture structures that have direct influence
on the execution of programs (processors with registers, caches, other
levels of the memory hierarchy, supervisor/kernel mode, and I/O
structures) and covers implementation and representation issues only
to the extend that they are necessary to understand the structure and
operation of a computer system.

The course attempts to expose students to the practical issues that
affect performance, portability, security, robustness, and
extensibility. This course provides a foundation for subsequent
courses on operating systems, networks, compilers and many other
courses that require an understanding of the system-level
issues. Topics covered include: machine-level code and its generation
by optimizing compilers, address translation, input and output,
trap/event handlers, performance evaluation and optimization (with a
focus on the practical aspects of data collection and analysis).
Skript- C programmnig
- Integers
- Pointers and dynamic memory allocation
- Basic computer architecture
- Compiling C control flow and data structures
- Code vulnerabilities
- Implementing memory allocation
- Linking
- Floating point
- Optimizing compilers
- Architecture and optimization
- Caches
- Exceptions
- Virtual memory
- Multicore
- Devices
LiteraturThe course is based in part on "Computer Systems: A Programmer's Perspective" (3rd Edition) by R. Bryant and D. O'Hallaron, with additional material.
Voraussetzungen / Besonderes252-0029-00L Parallel Programming
252-0028-00L Design of Digital Circuits
Block G3
Die Lehrveranstaltungen von Block G3 finden im Frühjahrssemester statt.
Block G4
Die Lehrveranstaltungen von Block G4 finden im Frühjahrssemester statt.
Kernfächer aus dem Bereich I (Module)
ab HS 2019 angeboten
Kernfächer aus dem Bereich II
ab HS 2019 angeboten
Bachelor-Arbeit
Wenn Sie anstelle von 401-2000-00L Scientific Works in Mathematics die Lerneinheit 402-2000-00L Scientific Works in Physics anrechnen lassen möchten (dies ist erlaubt im Studiengang Rechnergestützte Wissenschaften), so wenden Sie sich nach dem Verfügen des Resultates an das Studiensekretariat (www.math.ethz.ch/studiensekretariat).
NummerTitelTypECTSUmfangDozierende
401-2000-00LScientific Works in Mathematics
Zielpublikum:
Bachelor-Studierende im dritten Jahr;
Master-Studierende, welche noch keine entsprechende Ausbildung vorweisen können.
O0 KPE. Kowalski
KurzbeschreibungIntroduction to scientific writing for students with focus on publication standards and ethical issues, especially in the case of citations (references to works of others.)
LernzielLearn the basic standards of scientific works in mathematics.
Inhalt- Types of mathematical works
- Publication standards in pure and applied mathematics
- Data handling
- Ethical issues
- Citation guidelines
SkriptMoodle of the Mathematics Library: https://moodle-app2.let.ethz.ch/course/view.php?id=519
Voraussetzungen / BesonderesWeisung Link
401-2000-01LRecherchieren in der Mathematik [wird überarbeitet]
Für Details und zur Registrierung für den freiwilligen MathBib-Schulungskurs: https://www.math.ethz.ch/mathbib-schulungen
Z0 KPReferent/innen
KurzbeschreibungFreiwilliger Kurs "Recherchieren in der Mathematik" angeboten von der Mathematikbibliothek.
Lernziel
402-2000-00LScientific Works in Physics
Zielpublikum:
Master-Studierende, welche noch keine entsprechende Ausbildung vorweisen können.

Weisung Link
W0 KPC. Grab
KurzbeschreibungLiterature Review: ETH-Library, Journals in Physics, Google Scholar; Thesis Structure: The IMRAD Model; Document Processing: LaTeX and BibTeX, Mathematical Writing, AVETH Survival Guide; ETH Guidelines for Integrity; Authorship Guidelines; ETH Citation Etiquettes; Declaration of Originality.
LernzielBasic standards for scientific works in physics: How to write a Master Thesis. What to know about research integrity.
401-3990-18LBachelor-Arbeit Belegung eingeschränkt - Details anzeigen
Nur für Rechnergestützte Wissenschaften BSc, Studienreglement 2018.

Voraussetzung: erfolgreicher Abschluss der Lerneinheit 401-2000-00L Scientific Works in Mathematics oder 402-2000-00L Scientific Works in Physics
Weitere Angaben unter www.math.ethz.ch/intranet/students/study-administration/theses.html
O14 KP30DBetreuer/innen
KurzbeschreibungDie Bachelor-Arbeit bildet den Abschluss des Studiengangs. Sie soll einerseits dazu dienen, das Wissen in einem bestimmten Fachgebiet zu vertiefen sowie in einen ersten Kontakt mit Anwendungen zu kommen und Probleme aus solchen Anwendungen in einer bestehenden wissenschaftlichen Gruppe rechnergestützt anzugehen. Die Bachelor-Arbeit umfasst ca. 160 Stunden.
LernzielDie Bachelorarbeit soll einerseits dazu dienen, das Wissen in einem bestimmten Fachgebiet zu vertiefen sowie in einen ersten Kontakt mit Anwendungen zu kommen und Probleme aus solchen Anwendungen rechnergestützt anzugehen. Andererseits soll auch gelernt werden, in einer bestehenden wissenschaftlichen Gruppe mitzuarbeiten.
Voraussetzungen / BesonderesDer verantwortliche Leiter der Bachelorarbeit definiert die Aufgabenstellung und legt den Beginn der Bachelorarbeit und den Abgabetermin fest. Die Bachelorarbeit wird mit einem schriftlichen Bericht abgeschlossen. Die Leistung wird mit einer Note bewertet.
Bachelor-Studium (Studienreglement 2012 und 2016)
Grundlagenfächer
Block G1
NummerTitelTypECTSUmfangDozierende
401-0353-00LAnalysis III Information O4 KP2V + 2UA. Figalli
KurzbeschreibungIn this lecture we treat problems in applied analysis. The focus lies on the solution of quasilinear first order PDEs with the method of characteristics, and on the study of three fundamental types of partial differential equations of second order: the Laplace equation, the heat equation, and the wave equation.
LernzielThe aim of this class is to provide students with a general overview of first and second order PDEs, and teach them how to solve some of these equations using characteristics and/or separation of variables.
Inhalt1.) General introduction to PDEs and their classification (linear, quasilinear, semilinear, nonlinear / elliptic, parabolic, hyperbolic)

2.) Quasilinear first order PDEs
- Solution with the method of characteristics
- COnservation laws

3.) Hyperbolic PDEs
- wave equation
- d'Alembert formula in (1+1)-dimensions
- method of separation of variables

4.) Parabolic PDEs
- heat equation
- maximum principle
- method of separation of variables

5.) Elliptic PDEs
- Laplace equation
- maximum principle
- method of separation of variables
- variational method
LiteraturY. Pinchover, J. Rubinstein, "An Introduction to Partial Differential Equations", Cambridge University Press (12. Mai 2005)
Voraussetzungen / BesonderesPrerequisites: Analysis I and II, Fourier series (Complex Analysis)
402-0811-00LProgramming Techniques for Scientific Simulations IO5 KP4GR. Käppeli
KurzbeschreibungThis lecture provides an overview of programming techniques for scientific simulations. The focus is on advances C++ programming techniques and scientific software libraries. Based on an overview over the hardware components of PCs and supercomputer, optimization methods for scientific simulation codes are explained.
Lernziel
401-0663-00LNumerical Methods for CSE Information O8 KP4V + 2U + 1PR. Alaifari
KurzbeschreibungThe course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.
Lernziel* Knowledge of the fundamental algorithms in numerical mathematics
* Knowledge of the essential terms in numerical mathematics and the
techniques used for the analysis of numerical algorithms
* Ability to choose the appropriate numerical method for concrete problems
* Ability to interpret numerical results
* Ability to implement numerical algorithms afficiently
Inhalt1. Direct Methods for linear systems of equations
2. Least Squares Techniques
3. Data Interpolation and Fitting
4. Filtering Algorithms
8. Approximation of Functions
9. Numerical Quadrature
10. Iterative Methods for non-linear systems of equations
11. Single Step Methods for ODEs
12. Stiff Integrators
SkriptLecture materials (PDF documents and codes) will be made available to the participants through the course web page:
https://metaphor.ethz.ch/x/2018/hs/401-0663-00L/
LiteraturU. ASCHER AND C. GREIF, A First Course in Numerical Methods, SIAM, Philadelphia, 2011.

A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical mathematics, vol. 37 of Texts in Applied Mathematics, Springer, New York, 2000.

W. Dahmen, A. Reusken "Numerik für Ingenieure und Naturwissenschaftler", Springer 2006.

M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002

P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002
Voraussetzungen / BesonderesThe course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves.
Block G2
NummerTitelTypECTSUmfangDozierende
401-0603-00LStochastik Information O4 KP2V + 1UM. H. Maathuis
KurzbeschreibungDie Vorlesung deckt folgende Themenbereiche ab: Zufallsvariablen, Wahrscheinlichkeit und Wahrscheinlichkeitsverteilungen, gemeinsame und bedingte Wahrscheinlichkeiten und Verteilungen, das Gesetz der Grossen Zahlen, der zentrale Grenzwertsatz, deskriptive Statistik, schliessende Statistik, Statistik bei normalverteilten Daten, Punktschätzungen, und Vergleich zweier Stichproben.
LernzielKenntnis der Grundlagen der Wahrscheinlichkeitstheorie und Statistik.
InhaltEinführung in die Wahrscheinlichkeitstheorie, einige Grundbegriffe der mathematischen Statistik und Methoden der angewandten Statistik.
SkriptVorlesungsskript
LiteraturVorlesungsskript
252-0834-00LInformation Systems for Engineers Information O4 KP2V + 1UG. Fourny
KurzbeschreibungThis course provides the basics of relational databases from the perspective of the user.

We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).

After this course, you will be ready for Big Data for Engineers.
LernzielAfter visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.

2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).

3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.

4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality

5. Explain what bad design is and why it matters.

6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".

7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.

8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.

9. Explain what data independence is all about and didn't age a bit since the 1970s.

10. Explain, in the big picture, how a relational database is physically implemented.

11. Know and deal with the natural syntax for relational data, CSV.

12. Explain the data cube model including slicing and dicing.

13. Store data cubes in a relational database.

14. Map cube queries to SQL.

15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.
InhaltUsing a relational database
=================
1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level
=================
6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database
=================
12. Data cubes

Outlook
=================
13. Outlook
Literatur- Lecture material (slides).

- Book: "Database Systems: The Complete Book", H. Garcia-Molina, J.D. Ullman, J. Widom
(It is not required to buy the book, as the library has it)
Voraussetzungen / BesonderesFor non-CS/DS students only, BSc and MSc
Elementary knowledge of set theory and logics
Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python
  •  Seite  1  von  5 Nächste Seite Letzte Seite     Alle