# Suchergebnis: Katalogdaten im Herbstsemester 2018

Data Science Master | ||||||

Interdisziplinäre Wahlfächer | ||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|

227-1033-00L | Neuromorphic Engineering I Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots. Preference is given to students that require this class as part of their major. | W | 6 KP | 2V + 3U | T. Delbrück, G. Indiveri, S.‑C. Liu | |

Kurzbeschreibung | This course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions. | |||||

Lernziel | Understanding of the characteristics of neuromorphic circuit elements. | |||||

Inhalt | Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems. | |||||

Literatur | S.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications. | |||||

Voraussetzungen / Besonderes | Particular: The course is highly recommended for those who intend to take the spring semester course 'Neuromorphic Engineering II', that teaches the conception, simulation, and physical layout of such circuits with chip design tools. Prerequisites: Background in basics of semiconductor physics helpful, but not required. | |||||

227-0945-00L | Cell and Molecular Biology for Engineers IThis course is part I of a two-semester course. | W | 3 KP | 2G | C. Frei | |

Kurzbeschreibung | The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology. | |||||

Lernziel | After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested. | |||||

Inhalt | Lectures will include the following topics (part I and II): DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells. In addition, 4 journal clubs will be held, where recent publications will be discussed (2 journal clubs in part I and 2 journal clubs in part II). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 40% for the final grade. | |||||

Skript | Scripts of all lectures will be available. | |||||

Literatur | "Molecular Biology of the Cell" (6th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter. | |||||

261-5100-00L | Computational Biomedicine Number of participants limited to 60. | W | 4 KP | 2V + 1U | G. Rätsch | |

Kurzbeschreibung | The course critically reviews central problems in Biomedicine and discusses the technical foundations and solutions for these problems. | |||||

Lernziel | Over the past years, rapid technological advancements have transformed classical disciplines such as biology and medicine into fields of apllied data science. While the sheer amount of the collected data often makes computational approaches inevitable for analysis, it is the domain specific structure and close relation to research and clinic, that call for accurate, robust and efficient algorithms. In this course we will critically review central problems in Biomedicine and will discuss the technical foundations and solutions for these problems. | |||||

Inhalt | The course will consist of three topic clusters that will cover different aspects of data science problems in Biomedicine: 1) String algorithms for the efficient representation, search, comparison, composition and compression of large sets of strings, mostly originating from DNA or RNA Sequencing. This includes genome assembly, efficient index data structures for strings and graphs, alignment techniques as well as quantitative approaches. 2) Statistical models and algorithms for the assessment and functional analysis of individual genomic variations. this includes the identification of variants, prediction of functional effects, imputation and integration problems as well as the association with clinical phenotypes. 3) Models for organization and representation of large scale biomedical data. This includes ontolgy concepts, biomedical databases, sequence annotation and data compression. | |||||

Voraussetzungen / Besonderes | Data Structures & Algorithms, Introduction to Machine Learning, Statistics/Probability, Programming in Python, Unix Command Line | |||||

261-5112-00L | Advanced Approaches for Population Scale Compressive GenomicsNumber of participants limited to 30. | W | 3 KP | 2G | A. Kahles | |

Kurzbeschreibung | Research in Biology and Medicine have been transformed into disciplines of applied data science over the past years. Not only size and inherentcomplexity of the data but also requirements on data privacy and complexity of search and access pose a wealth of new research questions. | |||||

Lernziel | This interactive course will explore the latest research on algorithms and data structures for population scale genomics applications and give insights into both the technical basis as well as the domain questions motivating it. | |||||

Inhalt | Over the duration of the semester, the course will cover three main topics. Each of the topics will consist of 70-80% lecture content and 20-30% seminar content. 1) Algorithms and data structures for text and graph compression. Motivated through applications in compressive genomics, the course will cover succinct indexing schemes for strings, trees and general graphs, compression schemes for binary matrices as well as the efficient representation of haplotypes and genomic variants. 2) Stochastic data structures and algorithms for approximate representation of strings and graphs as well as sets in general. This includes winnowing schemes and minimizers, sketching techniques, (minimal perfect) hashing and approximate membership query data structures. 3) Data structures supporting encryption and data privacy. As an extension to data structures discussed in the earlier topics, this will include secure indexing using homomorphic encryption as well as design for secure storage and distribution of data. | |||||

636-0017-00L | Computational Biology | W | 6 KP | 3G + 2A | T. Stadler, C. Magnus, T. Vaughan | |

Kurzbeschreibung | The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced. | |||||

Lernziel | Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are: * stochastic models in molecular evolution * phylogenetic & phylodynamic inference * maximum likelihood and Bayesian statistics Attendees will apply these concepts to a number of applications yielding biological insight into: * epidemiology * pathogen evolution * macroevolution of species | |||||

Inhalt | The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS. Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises. | |||||

Skript | Lecture slides will be available on moodle. | |||||

Literatur | The course is not based on any of the textbooks below, but they are excellent choices as accompanying material: * Yang, Z. 2006. Computational Molecular Evolution. * Felsenstein, J. 2004. Inferring Phylogenies. * Semple, C. & Steel, M. 2003. Phylogenetics. * Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST. | |||||

Voraussetzungen / Besonderes | Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course „Introduction to Programming“, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date http://www.cbb.ethz.ch/news-events.html For the Zurich-based students without R experience, we recommend the R course Link, or working through the script provided as part of this R course. | |||||

701-0023-00L | Atmosphäre | W | 3 KP | 2V | E. M. Fischer, T. Peter | |

Kurzbeschreibung | Grundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht. | |||||

Lernziel | Verständnis grundlegender physikalischer und chemischer Prozesse in der Atmosphäre. Kenntnis über die Mechanismen und Zusammenhänge von: Wetter - Klima, Atmosphäre - Ozeane - Kontinente, Troposphäre - Stratosphäre. Verständnis von umweltrelevanten Strukturen und Vorgängen in sehr unterschiedlichem Massstab. Grundlagen für eine modellmässige Darstellung komplexer Zusammenhänge in der Atmosphäre. | |||||

Inhalt | Grundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht. | |||||

Skript | Schriftliche Unterlagen werden abgegeben. | |||||

Literatur | - John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998. - Gösta H. Liljequist, Allgemeine Meteorologie, Vieweg, Braunschweig, 1974. | |||||

701-0473-00L | Wettersysteme | W | 3 KP | 2G | M. A. Sprenger, F. Scholder-Aemisegger | |

Kurzbeschreibung | Satellitenbeobachtungen; Analyse vertikaler Sondierungen; Geostrophischer und thermischer Wind; Tiefdruckwirbel in den mittleren Breiten; globalen Zirkulation; Nordatlantische Oszillation; Atmosphärische Blockierungswetterlagen; Eulersche und Lagrange Perspektive der Dynamik; Potentielle Vortizität; Alpine Dynamik (Windstürme, Um- und Überströmung von Gebirgen); Planetare Grenzschicht | |||||

Lernziel | Die Studierenden können: - die gängigen Mess- und Analysemethoden der Atmosphärendynamik erklären - mathematische Grundlagen der Atmosphärendynamik beispielhaft erklären - die Dynamik von globalen und synoptisch-skaligen Prozessen erklären - den Einfluss von Gebirgen auf die Atmosphärendynamik erklären | |||||

Inhalt | Satellitenbeobachtungen; Analyse vertikaler Sondierungen; Geostrophischer und thermischer Wind; Tiefdruckwirbel in den mittleren Breiten; Überblick und Energetik der globalen Zirkulation; Nordatlantische Oszillation; Atmosphärische Blockierungswetterlagen; Eulersche und Lagrange Perspektive der Dynamik; Potentielle Vortizität; Alpine Dynamik (Windstürme, Um- und Überströmung von Gebirgen); Planetare Grenzschicht | |||||

Skript | Vorlesungsskript + Folien | |||||

Literatur | Atmospheric Science, An Introductory Survey John M. Wallace and Peter V. Hobbs, Academic Press | |||||

701-1251-00L | Land-Climate Dynamics Number of participants limited to 36. | W | 3 KP | 2G | S. I. Seneviratne, E. L. Davin | |

Kurzbeschreibung | The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises. | |||||

Lernziel | The students can understand the role of land processes and associated feedbacks in the climate system. | |||||

Skript | Powerpoint slides will be made available | |||||

Voraussetzungen / Besonderes | Prerequisites: Introductory lectures in atmospheric and climate science Atmospheric physics -> Link and/or Climate systems -> Link | |||||

101-0417-00L | Transport Planning Methods | W | 6 KP | 4G | K. W. Axhausen | |

Kurzbeschreibung | The course provides the necessary knowledge to develop models supporting and also evaluating the solution of given planning problems. The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/ policy by means of cost-benefit analysis. | |||||

Lernziel | - Knowledge and understanding of statistical methods and algorithms commonly used in transport planning - Comprehend the reasoning and capabilities of transport models - Ability to independently develop a transport model able to solve / answer planning problem - Getting familiar with cost-benefit analysis as a decision-making supporting tool | |||||

Inhalt | The course provides the necessary knowledge to develop models supporting the solution of given planning problems and also introduces cost-benefit analysis as a decision-making tool. Examples of such planning problems are the estimation of traffic volumes, prediction of estimated utilization of new public transport lines, and evaluation of effects (e.g. change in emissions of a city) triggered by building new infrastructure and changes to operational regulations. To cope with that, the problem is divided into sub-problems, which are solved using various statistical models (e.g. regression, discrete choice analysis) and algorithms (e.g. iterative proportional fitting, shortest path algorithms, method of successive averages). The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/ policy by means of cost-benefit analysis. Interim lab session take place regularly to guide and support students with the applied part of the course. | |||||

Skript | Moodle platform (enrollment needed) | |||||

Literatur | Willumsen, P. and J. de D. Ortuzar (2003) Modelling Transport, Wiley, Chichester. Cascetta, E. (2001) Transportation Systems Engineering: Theory and Methods, Kluwer Academic Publishers, Dordrecht. Sheffi, Y. (1985) Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice Hall, Englewood Cliffs. Schnabel, W. and D. Lohse (1997) Verkehrsplanung, 2. edn., vol. 2 of Grundlagen der Strassenverkehrstechnik und der Verkehrsplanung, Verlag für Bauwesen, Berlin. McCarthy, P.S. (2001) Transportation Economics: A case study approach, Blackwell, Oxford. | |||||

101-0491-00L | Agent Based Modeling in Transportation | W | 6 KP | 4G | T. J. P. Dubernet, M. Balac | |

Kurzbeschreibung | This lectures provides a round tour of agent based models for transportation policy analysis. First, it introduces statistical methods to combine heterogeneous data sources in a usable representation of the population. Then, agent based models are described in details, and applied in a case study. | |||||

Lernziel | At the end of the course, the students should: - be aware of the various data sources available for mobility behavior analysis - be able to combine those data sources in a coherent representation of the transportation demand - understand what agent based models are, when they are useful, and when they are not - have working knowledge of the MATSim software, and be able to independently evaluate a transportation problem using it | |||||

Inhalt | This lecture provides a complete introduction to agent based models for transportation policy analysis. Two important topics are covered: 1) Combination of heterogeneous data sources to produce a representation of the transport system At the center of agent based models and other transport analyses is the synthetic population, a statistically realistic representation of the population and their transport needs. This part will present the most common types of data sources and statistical methods to generate such a population. 2) Use of Agent-Based methods to evaluate transport policies The second part will introduce the agent based paradigm in details, including tradeoffs compared to state-of-practice methods. An important part of the grade will come from a policy analysis to carry with the MATSim open-source software, which is developed at ETH Zurich and TU Berlin and gets used more and more by practitioners, notably the Swiss rail operator SBB. | |||||

Literatur | Agent-based modeling in general Helbing, D (2012) Social Self-Organization, Understanding Complex Systems, Springer, Berlin. Heppenstall, A., A. T. Crooks, L. M. See and M. Batty (2012) Agent-Based Models of Geographical Systems, Springer, Dordrecht. MATSim Horni, A., K. Nagel and K.W. Axhausen (eds.) (2016) The Multi-Agent Transport Simulation MATSim, Ubiquity, London (http://www.matsim.org/the-book) Additional relevant readings, mostly scientific articles, will be recommended throughout the course. | |||||

Voraussetzungen / Besonderes | There are no strict preconditions in terms of which lectures the students should have previously attended. However, knowledge of basic statistical theory is expected, and experience with high-level programming languages (Java, R, Python...) is useful. | |||||

103-0227-00L | Cartography III | W | 5 KP | 4G | L. Hurni | |

Kurzbeschreibung | Grundlegende Methoden, Technologien, Systeme und Programmierung in der interaktiven Internet-Kartografie. | |||||

Lernziel | Kenntnisse über die grundlegenden Methoden, Technologien, Programmierung und Systeme in der interaktiven Internet-Kartografie erwerben. Bestehende Produkte bezüglich der angewendeten Produktionsmethoden beurteilen können und sinnvolle Methoden für konkrete Web-basierte Kartenprojekte bestimmen können. | |||||

Inhalt | - Web-Kartografie - Web Map Services (WMS) - Nutzerschnittstellen-Gestaltung - Symbolisierung von Internet-Karten - Programmierung - JavaScript - Debugging - Kartenerstellung mit GIS-Daten - 3D-Anwendungen in der Kartografie | |||||

Skript | Ein eigenes Skript zur Vorlesung und Übungsanleitungen werden abgegeben. | |||||

Literatur | - Grünreich, Dietmar, Hake, Günter and Liqiu Meng (2002): Kartographie, 8. Auflage, Verlag W. de Gruyter, Berlin - Robinson, Arthur et al. (1995): Elements of Cartography, 6th edition, John Wiley & Sons, New York, ISBN 0-471-55579-7 - Jones, Christopher (1997): Geographical Information Systems (GIS) and Computer Cartography, Longman, Harlow, ISBN 0-582-04439-1 - Stoll, Heinz (2001): Computergestützte Kartografie, SGK-Publikation Nr. 15 (siehe www.kartographie.ch) | |||||

Voraussetzungen / Besonderes | Voraussetzungen: Kartografie I; Kartografie II; Thematische Kartografie Weitere Informationen unter http://www.karto.ethz.ch/studium/lehrangebot.html | |||||

103-0237-00L | GIS III | W | 5 KP | 3G | M. Raubal | |

Kurzbeschreibung | The course deals with advanced topics in GIS: GIS project lifecycle, Managing GIS, Legal issues, GIS assets & constraints; Geospatial Web Services; Geostatistics; Geosimulation; Human-Computer Interaction; Cognitive Issues in GIS. | |||||

Lernziel | Students will get a detailed overview of advanced GIS topics. They will go through all steps of setting up a Web-GIS application in the labs and perform other practical tasks relating to Geosimulation, Human-Computer Interaction, Geostatistics, and Web Processing Services. | |||||

Skript | Lecture slides will be made available in digital form. | |||||

Literatur | Fu, P. and Sun, J., Web GIS - Principles and Applications (2011), ESRI Press, Redlands, California. O'Sullivan, D., & Unwin, D. (2010). Geographic Information Analysis (second ed.). Hoboken, New Jersey: Wiley. | |||||

103-0778-00L | GIS and Geoinformatics Lab | W | 4 KP | 4P | M. Raubal | |

Kurzbeschreibung | Independent study project with (mobile) geoinformation technologies. | |||||

Lernziel | Learn how to work with (mobile) geoinformation technologies (including application design and programming). | |||||

227-0575-00L | Advanced Topics in Communication Networks (Autumn 2018) | W | 6 KP | 2V + 2U | L. Vanbever | |

Kurzbeschreibung | This class will introduce students to advanced, research-level topics in the area of communication networks, both theoretically and practically. Coverage will vary from semester to semester. Repetition for credit is possible, upon consent of the instructor. During the Fall Semester of 2018, the class will concentrate on network programmability and network data plane programming. | |||||

Lernziel | The goal of this lecture is to introduce students to the latest advances in the area of computer networks, both theoretically and practically. The course will be divided in two main blocks. The first block (~7 weeks) will interleave classical lectures with practical exercises and paper readings. The second block (~6 weeks) will consist of a practical project involving real network hardware and which will be performed in small groups (~3 students). During the second block, lecture slots will be replaced by feedback sessions where students will be able to ask questions and get feedback about their project. The last week of the semester will be dedicated to student presentations and demonstrations. During the Fall Semester 2018, the class will focus on programmable network data planes and will involve developing network applications on top of the the latest generation of programmable network hardware: Barefoot Network’s Tofino switch ASICs. By leveraging data-plane programmability, these applications can build deep traffic insights to, for instance, detect traffic anomalies (e.g. using Machine Learning), flexibly adapt forwarding behaviors (to improve performance), speed-up distributed applications (e.g. Map Reduce), or track network-wide health. More importantly, all this can now be done at line-rate, at forwarding speeds that can reach Terabits per second. | |||||

Inhalt | Traditionally, computer networks have been composed of "closed" network devices (routers, switches, middleboxes) whose features, forwarding behaviors and configuration interfaces are exclusively defined on a per-vendor basis. Innovating in such networks is a slow-paced process (if at all possible): it often takes years for new features to make it to mainstream network equipments. Worse yet, managing the network is hard and prone to failures as operators have to painstakingly coordinate the behavior of heterogeneous network devices so that they, collectively, compute a compatible forwarding state. Actually, it has been shown that the majority of the network downtimes are caused by humans, not equipment failures. Network programmability and Software-Defined Networking (SDN) have recently emerged as a way to fundamentally change the way we build, innovate, and operate computer networks, both at the software *and* at the hardware level. Specifically, programmable networks now allow: (i) to adapt how traffic flows in the entire network through standardized software interfaces; and (ii) to reprogram the hardware pipeline of the network devices, i.e. the ASICs used to forward data packets. This year, the course will focus on reprogrammable network hardware/ASICs. It will involve hands-on experience on the world's fastest programmable switch to date (i.e. Barefoot Tofino switch ASIC). Among others, we'll cover the following topics: - The fundamentals and motivation behind network programmability; - The design and optimization of network control loops; - The use of advanced network data structures adapted for in-network execution; - The P4 programming language and associated runtime environment; - Hands-on examples of in-network applications solving hard problems in the area of data-centers, wide-area networks, and ISP networks. The course will be divided in two blocks of 7 weeks. The first block will consist in traditional lectures introducing the concepts along with practical exercises to get acquainted with programmable data planes. The second block will consist of a (mandatory) project to be done in groups of few students (~3 students). The project will involve developing a fully working network application and run it on top of real programmable network hardware. Students will be free to propose their own application or pick one from a list. At the end of the course, each group will present its application in front of the class. | |||||

Skript | Lecture notes and material will be made available before each course on the course website. | |||||

Literatur | Relevant references will be made available through the course website. | |||||

Voraussetzungen / Besonderes | Prerequisites: Communication Networks (227-0120-00L) or equivalents / good programming skills (in any language) are expected as both the exercices and the final project will involve coding. | |||||

263-3900-00L | Communication Networks Seminar Number of participants limited to 20. The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar. | W | 2 KP | 2S | A. Singla | |

Kurzbeschreibung | We explore recent advances in networking by reading high quality research papers, and discussing open research opportunities, most of which are suitable for students to later take up as thesis or semester projects. | |||||

Lernziel | The objectives are (a) to understand the state-of-the-art in the field; (b) to learn to read, present and critique papers; (c) to engage in discussion and debate about research questions; and (d) to identify opportunities for new research. Students are expected to attend the entire seminar, choose a topic for presentation from a given list, make a presentation on that topic, and lead the discussion. Further, for each reading, every student needs to submit a review before the in-class discussion. Students are evaluated on their submitted reviews, their presentation and discussion leadership, and participation in seminar discussions. | |||||

Literatur | A program will be posted here: https://ndal.ethz.ch/courses/networks-seminar.html, comprising of a list of papers the seminar group will cover. | |||||

Voraussetzungen / Besonderes | An undergraduate-level understanding of networking, such that the student is familiar with concepts like reliable transport protocols (like TCP) and basics of Internet routing. ETH courses that fulfill this requirement: Computer Networks (252-0064-00L) and its predecessor (Operating Systems and Networks -- 252-0062-00L). Similar courses at other universities are also sufficient. | |||||

401-3922-00L | Life Insurance Mathematics | W | 4 KP | 2V | M. Koller | |

Kurzbeschreibung | The classical life insurance model is presented together with the important insurance types (insurance on one and two lives, term and endowment insurance and disability). Besides that the most important terms such as mathematical reserves are introduced and calculated. The profit and loss account and the balance sheet of a life insurance company is explained and illustrated. | |||||

Lernziel | ||||||

401-3925-00L | Non-Life Insurance: Mathematics and Statistics | W | 8 KP | 4V + 1U | M. V. Wüthrich | |

Kurzbeschreibung | The lecture aims at providing a basis in non-life insurance mathematics which forms a core subject of actuarial sciences. It discusses collective risk modeling, individual claim size modeling, approximations for compound distributions, ruin theory, premium calculation principles, tariffication with generalized linear models, credibility theory, claims reserving and solvency. | |||||

Lernziel | The student is familiar with the basics in non-life insurance mathematics and statistics. This includes the basic mathematical models for insurance liability modeling, pricing concepts, stochastic claims reserving models and ruin and solvency considerations. | |||||

Inhalt | The following topics are treated: Collective Risk Modeling Individual Claim Size Modeling Approximations for Compound Distributions Ruin Theory in Discrete Time Premium Calculation Principles Tariffication and Generalized Linear Models Bayesian Models and Credibility Theory Claims Reserving Solvency Considerations | |||||

Skript | M. V. Wüthrich, Non-Life Insurance: Mathematics & Statistics http://ssrn.com/abstract=2319328 | |||||

Voraussetzungen / Besonderes | The exams ONLY take place during the official ETH examination period. This course will be held in English and counts towards the diploma of "Aktuar SAV". For the latter, see details under www.actuaries.ch. Prerequisites: knowledge of probability theory, statistics and applied stochastic processes. | |||||

401-3928-00L | Reinsurance Analytics | W | 4 KP | 2V | P. Antal, P. Arbenz | |

Kurzbeschreibung | This course provides an actuarial introduction to reinsurance. The objective is to understand the fundamentals of risk transfer through reinsurance, and the mathematical models for extreme events such as natural or man-made catastrophes. The lecture covers reinsurance contracts, Experience and Exposure pricing, natural catastrophe modelling, solvency regulation, and alternative risk transfer | |||||

Lernziel | This course provides an introduction to reinsurance from an actuarial point of view. The objective is to understand the fundamentals of risk transfer through reinsurance, and the mathematical approaches associated with low frequency high severity events such as natural or man-made catastrophes. Topics covered include: - Reinsurance Contracts and Markets: Different forms of reinsurance, their mathematical representation, history of reinsurance, and lines of business. - Experience Pricing: Modelling of low frequency high severity losses based on historical data, and analytical tools to describe and understand these models - Exposure Pricing: Loss modelling based on exposure or risk profile information, for both property and casualty risks - Natural Catastrophe Modelling: History, relevance, structure, and analytical tools used to model natural catastrophes in an insurance context - Solvency Regulation: Regulatory capital requirements in relation to risks, effects of reinsurance thereon, and differences between the Swiss Solvency Test and Solvency 2 - Alternative Risk Transfer: Alternatives to traditional reinsurance such as insurance linked securities and catastrophe bonds | |||||

Inhalt | This course provides an introduction to reinsurance from an actuarial point of view. The objective is to understand the fundamentals of risk transfer through reinsurance, and the mathematical approaches associated with low frequency high severity events such as natural or man-made catastrophes. Topics covered include: - Reinsurance Contracts and Markets: Different forms of reinsurance, their mathematical representation, history of reinsurance, and lines of business. - Experience Pricing: Modelling of low frequency high severity losses based on historical data, and analytical tools to describe and understand these models - Exposure Pricing: Loss modelling based on exposure or risk profile information, for both property and casualty risks - Natural Catastrophe Modelling: History, relevance, structure, and analytical tools used to model natural catastrophes in an insurance context - Solvency Regulation: Regulatory capital requirements in relation to risks, effects of reinsurance thereon, and differences between the Swiss Solvency Test and Solvency 2 - Alternative Risk Transfer: Alternatives to traditional reinsurance such as insurance linked securities and catastrophe bonds | |||||

Skript | Slides, lecture notes, and references to literature will be made available. | |||||

Voraussetzungen / Besonderes | Basic knowledge in statistics, probability theory, and actuarial techniques | |||||

401-4889-00L | Mathematical Finance | W | 11 KP | 4V + 2U | M. Schweizer | |

Kurzbeschreibung | Advanced course on mathematical finance: - semimartingales and general stochastic integration - absence of arbitrage and martingale measures - fundamental theorem of asset pricing - option pricing and hedging - hedging duality - optimal investment problems - additional topics | |||||

Lernziel | Advanced course on mathematical finance, presupposing good knowledge in probability theory and stochastic calculus (for continuous processes) | |||||

Inhalt | This is an advanced course on mathematical finance for students with a good background in probability. We want to give an overview of main concepts, questions and approaches, and we do this mostly in continuous-time models. Topics include - semimartingales and general stochastic integration - absence of arbitrage and martingale measures - fundamental theorem of asset pricing - option pricing and hedging - hedging duality - optimal investment problems - and probably others | |||||

Skript | The course is based on different parts from different books as well as on original research literature. Lecture notes will not be available. | |||||

Literatur | (will be updated later) | |||||

Voraussetzungen / Besonderes | Prerequisites are the standard courses - Probability Theory (for which lecture notes are available) - Brownian Motion and Stochastic Calculus (for which lecture notes are available) Those students who already attended "Introduction to Mathematical Finance" will have an advantage in terms of ideas and concepts. This course is the second of a sequence of two courses on mathematical finance. The first course "Introduction to Mathematical Finance" (MF I), 401-3888-00, focuses on models in finite discrete time. It is advisable that the course MF I is taken prior to the present course, MF II. For an overview of courses offered in the area of mathematical finance, see Link. | |||||

401-8905-00L | Financial Engineering (University of Zurich)Der Kurs muss direkt an der UZH belegt werden. UZH Modulkürzel: MFOEC200 Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html | W | 6 KP | 4G | Uni-Dozierende | |

Kurzbeschreibung | This lecture is intended for students who would like to learn more on equity derivatives modelling and pricing. | |||||

Lernziel | Quantitative models for European option pricing (including stochastic volatility and jump models), volatility and variance derivatives, American and exotic options. | |||||

Inhalt | After introducing fundamental concepts of mathematical finance including no-arbitrage, portfolio replication and risk-neutral measure, we will present the main models that can be used for pricing and hedging European options e.g. Black- Scholes model, stochastic and jump-diffusion models, and highlight their assumptions and limitations. We will cover several types of derivatives such as European and American options, Barrier options and Variance- Swaps. Basic knowledge in probability theory and stochastic calculus is required. Besides attending class, we strongly encourage students to stay informed on financial matters, especially by reading daily financial newspapers such as the Financial Times or the Wall Street Journal. | |||||

Skript | Script. | |||||

Voraussetzungen / Besonderes | Basic knowledge of probability theory and stochastic calculus. Asset Pricing. |

- Seite 1 von 2 Alle