Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

Suchergebnis: Katalogdaten im Herbstsemester 2018

Informatik Lehrdiplom Information
Weitere Informationen: Link
Auflagenfächer (für Studierende mit ETH-Master in Phys/MATH/RW)
Teil 1
NummerTitelTypECTSUmfangDozierende
252-0057-00LTheoretische Informatik Information O7 KP4V + 2UJ. Hromkovic, H.‑J. Böckenhauer
KurzbeschreibungKonzepte zur Beantwortung grundlegender Fragen wie: a) Was ist völlig automatisiert machbar (algorithmisch lösbar) b) Wie kann man die Schwierigkeit von Aufgaben (Problemen) messen? c) Was ist Zufall und wie kann er nützlich sein? d) Was ist Nichtdeterminisus und welche Rolle spielt er in der Informatik? e) Wie kann man unendliche Objekte durch Automaten und Grammatiken endlich darstellen?
LernzielVermittlung der grundlegenden Konzepte der Informatik in ihrer geschichtlichen Entwicklung
InhaltDie Veranstaltung ist eine Einführung in die Theoretische Informatik, die die grundlegenden Konzepte und Methoden der Informatik in ihrem geschichtlichen Zusammenhang vorstellt. Wir präsentieren Informatik als eine interdisziplinäre Wissenschaft, die auf einer Seite die Grenzen zwischen Möglichem und Unmöglichem und die quantitativen Gesetze der Informationsverarbeitung erforscht und auf der anderen Seite Systeme entwirft, analysiert, verifiziert und implementiert.

Die Hauptthemen der Vorlesung sind:

- Alphabete, Wörter, Sprachen, Messung der Informationsgehalte von Wörtern, Darstellung von algorithmischen Aufgaben
- endliche Automaten, reguläre und kontextfreie Grammatiken
- Turingmaschinen und Berechenbarkeit
- Komplexitätstheorie und NP-Vollständigkeit
- Algorithmenentwurf für schwere Probleme
SkriptDie Vorlesung ist detailliert durch das Lehrbuch "Theoretische Informatik" bedeckt.
LiteraturBasisliteratur:
1. J. Hromkovic: Theoretische Informatik. 5. Auflage, Springer Vieweg 2014.

2. J. Hromkovic: Theoretical Computer Science. Springer 2004.

Weiterführende Literatur:
3. M. Sipser: Introduction to the Theory of Computation, PWS Publ. Comp.1997
4. J.E. Hopcroft, R. Motwani, J.D. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie.
Pearson 2002.
5. I. Wegener: Theoretische Informatik. Teubner
Weitere Übungen und Beispiele:
6. A. Asteroth, Ch. Baier: Theoretische Informatik
Voraussetzungen / BesonderesWährend des Semesters werden zwei freiwillige Probeklausuren gestellt.
252-0061-00LSystems Programming and Computer Architecture Information O7 KP4V + 2UT. Roscoe
KurzbeschreibungIntroduction to systems programming. C and assembly language,
floating point arithmetic, basic translation of C into assembler,
compiler optimizations, manual optimizations. How hardware features
like superscalar architecture, exceptions and interrupts, caches,
virtual memory, multicore processors, devices, and memory systems
function and affect correctness, performance, and optimization.
LernzielThe course objectives are for students to:

1. Develop a deep understanding of, and intuition about, the execution
of all the layers (compiler, runtime, OS, etc.) between programs in
high-level languages and the underlying hardware: the impact of
compiler decisions, the role of the operating system, the effects
of hardware on code performance and scalability, etc.

2. Be able to write correct, efficient programs on modern hardware,
not only in C but high-level languages as well.

3. Understand Systems Programming as a complement to other disciplines
within Computer Science and other forms of software development.

This course does not cover how to design or build a processor or
computer.
InhaltThis course provides an overview of "computers" as a
platform for the execution of (compiled) computer programs. This
course provides a programmer's view of how computer systems execute
programs, store information, and communicate. The course introduces
the major computer architecture structures that have direct influence
on the execution of programs (processors with registers, caches, other
levels of the memory hierarchy, supervisor/kernel mode, and I/O
structures) and covers implementation and representation issues only
to the extend that they are necessary to understand the structure and
operation of a computer system.

The course attempts to expose students to the practical issues that
affect performance, portability, security, robustness, and
extensibility. This course provides a foundation for subsequent
courses on operating systems, networks, compilers and many other
courses that require an understanding of the system-level
issues. Topics covered include: machine-level code and its generation
by optimizing compilers, address translation, input and output,
trap/event handlers, performance evaluation and optimization (with a
focus on the practical aspects of data collection and analysis).
Skript- C programmnig
- Integers
- Pointers and dynamic memory allocation
- Basic computer architecture
- Compiling C control flow and data structures
- Code vulnerabilities
- Implementing memory allocation
- Linking
- Floating point
- Optimizing compilers
- Architecture and optimization
- Caches
- Exceptions
- Virtual memory
- Multicore
- Devices
LiteraturThe course is based in part on "Computer Systems: A Programmer's Perspective" (3rd Edition) by R. Bryant and D. O'Hallaron, with additional material.
Voraussetzungen / Besonderes252-0029-00L Parallel Programming
252-0028-00L Design of Digital Circuits
252-0026-00LAlgorithmen und Datenstrukturen Information O7 KP3V + 2U + 1AM. Püschel, D. Steurer
KurzbeschreibungEs werden grundlegende Entwurfsmuster für Algorithmen sowie klassische algorithmische Probleme und Datenstrukturen behandelt. Das Zusammenspiel von Algorithmen und Datenstrukturen wird anhand von Geometrie- und Graphenproblemen illustriert. In die Graphentheorie wird kurz eingeführt.
LernzielVerständnis des Entwurfs und der Analyse grundlegender Algorithmen und Datenstrukturen.
InhaltEs werden grundlegende Algorithmen und Datenstrukturen vorgestellt und analysiert. Dazu gehören auf der einen Seite Entwurfsmuster für Algorithmen, wie Induktion, divide-and-conquer, backtracking und dynamische Optimierung, ebenso wie klassische algorithmische Probleme, wie Suchen und Sortieren. Auf der anderen Seite werden Datenstrukturen für verschiedene Zwecke behandelt, darunter verkettete Listen, Hashtabellen, balancierte Suchbäume, verschiedene heaps und union-find-Strukturen. Weiterhin wird Adaptivität bei Datenstrukturen (wie etwa Splay-Bäume) und bei Algorithmen (wie etwa online-Algorithmen) beleuchtet. Das Zusammenspiel von Algorithmen und Datenstrukturen wird anhand von Geometrie- und Graphenproblemen illustriert. Hierfür werden grundlegende Konzepte der Graphentheorie eingeführt.
LiteraturTh. Ottmann, P.Widmayer: Algorithmen und Datenstrukturen, Spektrum-Verlag, 5. Auflage, Heidelberg, Berlin, Oxford, 2011
  •  Seite  1  von  1