Search result: Catalogue data in Autumn Semester 2018

Computer Science Master Information
Focus Courses
Focus Courses in Computational Science
Focus Core Courses Computational Science
NumberTitleTypeECTSHoursLecturers
252-0535-00LAdvanced Machine Learning Information W8 credits3V + 2U + 2AJ. M. Buhmann
AbstractMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
ObjectiveStudents will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
ContentThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
What is data?
Bayesian Learning
Computational learning theory

Supervised learning:
Ensembles: Bagging and Boosting
Max Margin methods
Neural networks

Unsupservised learning:
Dimensionality reduction techniques
Clustering
Mixture Models
Non-parametric density estimation
Learning Dynamical Systems
Lecture notesNo lecture notes, but slides will be made available on the course webpage.
LiteratureC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Prerequisites / NoticeThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.
636-0007-00LComputational Systems Biology Information W6 credits3V + 2UJ. Stelling
AbstractStudy of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).
ObjectiveThe aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.
ContentBiology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.
Lecture notesLink
LiteratureU. Alon, An introduction to systems biology. Chapman & Hall / CRC, 2006.

Z. Szallasi et al. (eds.), System modeling in cellular biology. MIT Press, 2010.

B. Ingalls, Mathematical modeling in systems biology: an introduction. MIT Press, 2013
Focus Elective Courses Computational Science
NumberTitleTypeECTSHoursLecturers
252-0543-01LComputer Graphics Information W6 credits3V + 2UM. Gross, J. Novak
AbstractThis course covers some of the fundamental concepts of computer graphics, namely 3D object representations and generation of photorealistic images from digital representations of 3D scenes.
ObjectiveAt the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.
ContentThis course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling and representation, texture mapping and ray-tracing, we will move on to acceleration structures, the physics of light transport, appearance modeling and global illumination principles and algorithms. We will end with an overview of modern image-based image synthesis techniques, covering topics such as lightfields and depth-image based rendering.
Lecture notesno
Prerequisites / NoticePrerequisites:
Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.
The programming assignments will be in C++. This will not be taught in the class.
261-5100-00LComputational Biomedicine Information Restricted registration - show details
Number of participants limited to 60.
W4 credits2V + 1UG. Rätsch
AbstractThe course critically reviews central problems in Biomedicine and discusses the technical foundations and solutions for these problems.
ObjectiveOver the past years, rapid technological advancements have transformed classical disciplines such as biology and medicine into fields of apllied data science. While the sheer amount of the collected data often makes computational approaches inevitable for analysis, it is the domain specific structure and close relation to research and clinic, that call for accurate, robust and efficient algorithms. In this course we will critically review central problems in Biomedicine and will discuss the technical foundations and solutions for these problems.
ContentThe course will consist of three topic clusters that will cover different aspects of data science problems in Biomedicine:
1) String algorithms for the efficient representation, search, comparison, composition and compression of large sets of strings, mostly originating from DNA or RNA Sequencing. This includes genome assembly, efficient index data structures for strings and graphs, alignment techniques as well as quantitative approaches.
2) Statistical models and algorithms for the assessment and functional analysis of individual genomic variations. this includes the identification of variants, prediction of functional effects, imputation and integration problems as well as the association with clinical phenotypes.
3) Models for organization and representation of large scale biomedical data. This includes ontolgy concepts, biomedical databases, sequence annotation and data compression.
Prerequisites / NoticeData Structures & Algorithms, Introduction to Machine Learning, Statistics/Probability, Programming in Python, Unix Command Line
636-0017-00LComputational Biology Information W6 credits3G + 2AT. Stadler, C. Magnus, T. Vaughan
AbstractThe aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced.
ObjectiveAttendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are:
* stochastic models in molecular evolution
* phylogenetic & phylodynamic inference
* maximum likelihood and Bayesian statistics
Attendees will apply these concepts to a number of applications yielding biological insight into:
* epidemiology
* pathogen evolution
* macroevolution of species
ContentThe course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS. Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises.
Lecture notesLecture slides will be available on moodle.
LiteratureThe course is not based on any of the textbooks below, but they are excellent choices as accompanying material:
* Yang, Z. 2006. Computational Molecular Evolution.
* Felsenstein, J. 2004. Inferring Phylogenies.
* Semple, C. & Steel, M. 2003. Phylogenetics.
* Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.
Prerequisites / NoticeBasic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course „Introduction to Programming“, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date Link
For the Zurich-based students without R experience, we recommend the R course Link, or working through the script provided as part of this R course.
Seminar in Computational Science
NumberTitleTypeECTSHoursLecturers
252-5701-00LAdvanced Topics in Computer Graphics and Vision Information Restricted registration - show details
Number of participants limited to 24.

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
W2 credits2SM. Gross, M. Pollefeys, O. Sorkine Hornung
AbstractThis seminar covers advanced topics in computer graphics, such as modeling, rendering, animation, real-time graphics, physical simulation, and computational photography. Each time the course is offered, a collection of research papers is selected and each student presents one paper to the class and leads a discussion about the paper and related topics.
ObjectiveThe goal is to get an in-depth understanding of actual problems and research topics in the field of computer graphics as well as improve presentations and critical analysis skills.
ContentThis seminar covers advanced topics in computer graphics,
including both seminal research papers as well as the latest
research results. Each time the course is offered, a collection of
research papers are selected covering topics such as modeling,
rendering, animation, real-time graphics, physical simulation, and
computational photography. Each student presents one paper to the
class and leads a discussion about the paper and related topics.
All students read the papers and participate in the discussion.
Lecture notesno script
LiteratureIndividual research papers are selected each term. See Link for the current list.
Prerequisites / NoticePrerequisites:
The courses "Computer Graphics I and II" (GDV I & II) are recommended, but not mandatory.
Focus Courses in Distributed Systems
Focus Core Courses Distributed Systems
NumberTitleTypeECTSHoursLecturers
263-3800-00LAdvanced Operating Systems Information
Does not take place this semester.
Takes place next spring semester (SS19)!
W6 credits2V + 2U + 1AT. Roscoe
AbstractThis course is intended to give students a thorough understanding of design and implementation issues for modern operating systems, with a particular emphasis on the challenges of modern hardware features. We will cover key design issues in implementing an operating system, such as memory management, scheduling, protection, inter-process communication, device drivers, and file systems.
ObjectiveThe goals of the course are, firstly, to give students:

1. A broader perspective on OS design than that provided by knowledge of Unix or Windows, building on the material in a standard undergraduate operating systems class

2. Practical experience in dealing directly with the concurrency, resource management, and abstraction problems confronting OS designers and implementers

3. A glimpse into future directions for the evolution of OS and computer hardware design
ContentThe course is based on practical implementation work, in C and assembly language, and requires solid knowledge of both. The work is mostly carried out in teams of 3-4, using real hardware, and is a mixture of team milestones and individual projects which fit together into a complete system at the end. Emphasis is also placed on a final report which details the complete finished artifact, evaluates its performance, and discusses the choices the team made while building it.
Prerequisites / NoticeThe course is based around a milestone-oriented project, where students work in small groups to implement major components of a microkernel-based operating system. The final assessment will be a combination grades awarded for milestones during the course of the project, a final written report on the work, and a set of test cases run on the final code.
252-1414-00LSystem Security Information W5 credits2V + 2US. Capkun, A. Perrig
AbstractThe first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.
ObjectiveIn this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.
ContentThe first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detetction systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.
Focus Elective Courses Distributed Systems
NumberTitleTypeECTSHoursLecturers
252-0437-00LDistributed Algorithms Information W4 credits3VF. Mattern
AbstractModels of distributed computations, time space diagrams, virtual time, logical clocks and causality, wave algorithms, parallel and distributed graph traversal, consistent snapshots, mutual exclusion, election and symmetry breaking, distributed termination detection, garbage collection in distributed systems, monitoring distributed systems, global predicates.
ObjectiveBecome acquainted with models and algorithms for distributed systems.
ContentVerteilte Algorithmen sind Verfahren, die dadurch charakterisiert sind, dass mehrere autonome Prozesse gleichzeitig Teile eines gemeinsamen Problems in kooperativer Weise bearbeiten und der dabei erforderliche Informationsaustausch ausschliesslich über Nachrichten erfolgt. Derartige Algorithmen kommen im Rahmen verteilter Systeme zum Einsatz, bei denen kein gemeinsamer Speicher existiert und die Übertragungszeit von Nachrichten i.a. nicht vernachlässigt werden kann. Da dabei kein Prozess eine aktuelle konsistente Sicht des globalen Zustands besitzt, führt dies zu interessanten Problemen.
Im einzelnen werden u.a. folgende Themen behandelt:
Modelle verteilter Berechnungen; Raum-Zeit Diagramme; Virtuelle Zeit; Logische Uhren und Kausalität; Wellenalgorithmen; Verteilte und parallele Graphtraversierung; Berechnung konsistenter Schnappschüsse; Wechselseitiger Ausschluss; Election und Symmetriebrechung; Verteilte Terminierung; Garbage-Collection in verteilten Systemen; Beobachten verteilter Systeme; Berechnung globaler Prädikate.
Literature- F. Mattern: Verteilte Basisalgorithmen, Springer-Verlag
- G. Tel: Topics in Distributed Algorithms, Cambridge University Press
- G. Tel: Introduction to Distributed Algorithms, Cambridge University Press, 2nd edition
- A.D. Kshemkalyani, M. Singhal: Distributed Computing, Cambridge University Press
- N. Lynch: Distributed Algorithms, Morgan Kaufmann Publ
252-0817-00LDistributed Systems Laboratory
In the Master Programme max.10 credits can be accounted by Labs on top of the Interfocus Courses. These Labs will only count towards the Master Programme. Additional Labs will be listed on the Addendum.
W10 credits9PG. Alonso, T. Hoefler, F. Mattern, T. Roscoe, A. Singla, R. Wattenhofer, C. Zhang
AbstractThis course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including wireless networks, ad-hoc networks, RFID, and distributed applications on smartphones.
ObjectiveGain hands-on-experience with real products and the latest technology in distributed systems.
ContentThis course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including as well wireless networks, ad-hoc networks, and distributed application on smartphones. The goal of the project is for the students to gain hands-on-experience with real products and the latest technology in distributed systems. There is no lecture associated to the course.
For information of the course or projects available, see Link or contact Prof. Mattern, Prof. Wattenhofer, Prof. Roscoe or Prof. G. Alonso.
263-2210-00LComputer Architecture Information W8 credits6G + 1AO. Mutlu
AbstractComputer architecture is the science and art of selecting and interconnecting hardware components to create a computer that meets functional, performance and cost goals. This course introduces the basic components of a modern computing system (processors, memory, interconnects, storage). The course takes a hardware/software cooperative approach to understanding and evaluating computing systems.
ObjectiveWe will learn the fundamental concepts of the different parts of modern computing systems, as well as the latest trends by exploring the recent research in Industry and Academia. We will extensively cover memory technologies (including DRAM and new Non-Volatile Memory technologies), memory scheduling, parallel computing systems (including multicore processors and GPUs), heterogeneous computing, processing-in-memory, interconnection networks, etc.
ContentThe principles presented in the lecture are reinforced in the laboratory through the design and simulation of a register transfer (RT) implementation of a MIPS-like pipelined processor in System Verilog. In addition, we will develop a cycle-accurate simulator of this processor in C, and we will use this simulator to explore processor design options.
Lecture notesAll the materials (including lecture slides) will be provided on the course website: Link
The video recordings of the lectures are expected to be made available after lectures.
LiteratureWe will provide required and recommended readings in every lecture. They will be mostly recent research papers presented in major Computer Architecture conferences and journals.
Prerequisites / NoticeDesign of Digital Circuits
263-3850-00LInformal Methods Information W4 credits2G + 1AD. Cock
AbstractFormal methods are increasingly a key part of the methodological toolkit of systems programmers - those writing operating systems, databases, and distributed systems. This course is about how to apply concepts, techniques, and principles from formal methods to such software systems, and how to get into the habit of thinking formally about systems design even when writing low-level C code.
ObjectiveThis course is about equipping students whose focus is systems with the insights and conceptual tools provided by formal methods, and therby enabling them to become better systems programmers.
By the end of the course, students should be able to seamlessly integrate basic concepts form formal methods into how they conceive, design, implement, reason about, and debug computer systems.

The goal is not to provide a comprehensive introduction to formal methods - this is well covered by other courses in the department. Instead, it is intended to provide students in computer systems (who may or may not have existing background knowledge of formal methods) with a basis for applying formal methods in their work.
ContentThis course does not assume prior knowledge of formal methods, and will start with a quick review of topics such static vs. dynamic reasoning, variants and invariants, program algebra and refinement, etc. However, it is strongly recommended that students have already taken one of the introductory formal methods course at ETH (or equivalents elsewhere) before taking this course - the emphasis is on reinforcing these concepts by applying them, not to teach them from scratch.

Instead, the majority of the course will be about how to apply these techniques to actual, practical code in real systems. We will work from real systems code written both by students taking the course, and practical systems developed using formal techniques, in particular the verified seL4 microkernel will be a key case study. We will also focus on informal, pen-and-paper arguments for correctness of programs and systems rather than using theorem provers or automated verification tools; again these latter techniques are well covered in other courses (and recommended as a complement to this one).
Seminar in Distributed Systems
NumberTitleTypeECTSHoursLecturers
263-3900-00LCommunication Networks Seminar Information Restricted registration - show details
Number of participants limited to 20.

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
W2 credits2SA. Singla
AbstractWe explore recent advances in networking by reading high quality research papers, and discussing open research opportunities, most of which are suitable for students to later take up as thesis or semester projects.
ObjectiveThe objectives are (a) to understand the state-of-the-art in the field; (b) to learn to read, present and critique papers; (c) to engage in discussion and debate about research questions; and (d) to identify opportunities for new research.

Students are expected to attend the entire seminar, choose a topic for presentation from a given list, make a presentation on that topic, and lead the discussion. Further, for each reading, every student needs to submit a review before the in-class discussion. Students are evaluated on their submitted reviews, their presentation and discussion leadership, and participation in seminar discussions.
LiteratureA program will be posted here: Link, comprising of a list of papers the seminar group will cover.
Prerequisites / NoticeAn undergraduate-level understanding of networking, such that the student is familiar with concepts like reliable transport protocols (like TCP) and basics of Internet routing. ETH courses that fulfill this requirement: Computer Networks (252-0064-00L) and its predecessor (Operating Systems and Networks -- 252-0062-00L). Similar courses at other universities are also sufficient.
263-3504-00LHardware Acceleration for Data Processing Information
The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
W2 credits2SG. Alonso, T. Hoefler, C. Zhang
AbstractThe seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.
ObjectiveThe seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.
ContentThe general application areas are big data and machine learning. The systems covered will include systems from computer architecture, high performance computing, data appliances, and data centers.
Prerequisites / NoticeStudents taking this seminar should have the necessary background in systems and low level programming.
Focus Courses in Information Security
Focus Core Courses Information Security
NumberTitleTypeECTSHoursLecturers
252-0463-00LSecurity Engineering Information W5 credits2V + 2UD. Basin
AbstractSubject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements&risk analysis, system modeling&model-based development methods, implementation-level security, and evaluation criteria for secure systems
ObjectiveSecurity engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software.
Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems
ContentSecurity engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software.
Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems

Modules taught:

1. Introduction
- Introduction of Infsec group and speakers
- Security meets SW engineering: an introduction
- The activities of SW engineering, and where security fits in
- Overview of this class
2. Requirements Engineering: Security Requirements and some Analysis
- overview: functional and non-functional requirements
- use cases, misuse cases, sequence diagrams
- safety and security
- FMEA, FTA, attack trees
3. Modeling in the design activities
- structure, behavior, and data flow
- class diagrams, statecharts
4. Model-driven security for access control (design)
- SecureUML as a language for access control
- Combining Design Modeling Languages with SecureUML
- Semantics, i.e., what does it all mean,
- Generation
- Examples and experience
5. Model-driven security (Part II)
- Continuation of above topics
6. Security patterns (design and implementation)
7. Implementation-level security
- Buffer overflows
- Input checking
- Injection attacks
8. Testing
- overview
- model-based testing
- testing security properties
9. Risk analysis and management 1 (project management)
- "risk": assets, threats, vulnerabilities, risk
- risk assessment: quantitative and qualitative
- safeguards
- generic risk analysis procedure
- The OCTAVE approach
10. Risk analysis: IT baseline protection
- Overview
- Example
11. Evaluation criteria
- CMMI
- systems security engineering CMM
- common criteria
12. Guest lecture
- TBA
Literature- Ross Anderson: Security Engineering, Wiley, 2001.
- Matt Bishop: Computer Security, Pearson Education, 2003.
- Ian Sommerville: Software Engineering, 6th ed., Addison-Wesley, 2001.
- John Viega, Gary McGraw: Building Secure Software, Addison-Wesley, 2002.
- Further relevant books and journal/conference articles will be announced in the lecture.
Prerequisites / NoticePrerequisite: Class on Information Security
252-1414-00LSystem Security Information W5 credits2V + 2US. Capkun, A. Perrig
AbstractThe first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.
ObjectiveIn this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.
ContentThe first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detetction systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.
263-4640-00LNetwork Security Information W6 credits2V + 1U + 2AA. Perrig, S. Frei
AbstractSome of today's most damaging attacks on computer systems involve
exploitation of network infrastructure, either as the target of attack
or as a vehicle to attack end systems. This course provides an
in-depth study of network attack techniques and methods to defend
against them.
Objective- Students are familiar with fundamental network security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess known vulnerabilities in a software system that is connected to the Internet (through analysis and penetration testing tools).
- Students have an in-depth understanding of a range of important security technologies.
- Students learn how formal analysis techniques can help in the design of secure networked systems.
ContentThe course will cover topics spanning five broad themes: (1) network
defense mechanisms such as secure routing protocols, TLS, anonymous
communication systems, network intrusion detection systems, and
public-key infrastructures; (2) network attacks such as denial of
service (DoS) and distributed denial-of-service (DDoS) attacks; (3)
analysis and inference topics such as network forensics and attack
economics; (4) formal analysis techniques for verifying the security
properties of network architectures; and (5) new technologies related
to next-generation networks.
Prerequisites / NoticeThis lecture is intended for students with an interest in securing
Internet communication services and network devices. Students are
assumed to have knowledge in networking as taught in a Communication
Networks lecture. The course will involve a course project and some
smaller programming projects as part of the homework. Students are
expected to have basic knowledge in network programming in a
programming language such as C/C++, Go, or Python.
Focus Elective Courses Information Security
NumberTitleTypeECTSHoursLecturers
252-0811-00LApplied Security Laboratory Information
In the Master Programme max. 10 credits can be accounted by Labs on top of the Interfocus Courses. Additional Labs will be listed on the Addendum.
W8 credits7PD. Basin
AbstractHands-on course on applied aspects of information security. Applied
information security, operating system security, OS hardening, computer forensics, web application security, project work, design, implementation, and configuration of security mechanisms, risk analysis, system review.
ObjectiveThe Applied Security Laboratory addresses four major topics: operating system security (hardening, vulnerability scanning, access control, logging), application security with an emphasis on web applications (web server setup, common web exploits, authentication, session handling, code security), computer forensics, and risk analysis and risk management.
ContentThis course emphasizes applied aspects of Information Security. The students will study a number of topics in a hands-on fashion and carry out experiments in order to better understand the need for secure implementation and configuration of IT systems and to assess the effectivity and impact of security measures. This part is based on a book and virtual machines that include example applications, questions, and answers.

The students will also complete an independent project: based on a set of functional requirements, they will design and implement a prototypical IT system. In addition, they will conduct a thorough security analysis and devise appropriate security measures for their systems. Finally, they will carry out a technical and conceptual review of another system. All project work will be performed in teams and must be properly documented.
Lecture notesThe course is based on the book "Applied Information Security - A Hands-on Approach". More information: Link
LiteratureRecommended reading includes:
* Pfleeger, Pfleeger: Security in Computing, Third Edition, Prentice Hall, available online from within ETH
* Garfinkel, Schwartz, Spafford: Practical Unix & Internet Security, O'Reilly & Associates.
* Various: OWASP Guide to Building Secure Web Applications, available online
* Huseby: Innocent Code -- A Security Wake-Up Call for Web Programmers, John Wiley & Sons.
* Scambray, Schema: Hacking Exposed Web Applications, McGraw-Hill.
* O'Reilly, Loukides: Unix Power Tools, O'Reilly & Associates.
* Frisch: Essential System Administration, O'Reilly & Associates.
* NIST: Risk Management Guide for Information Technology Systems, available online as PDF
* BSI: IT-Grundschutzhandbuch, available online
Prerequisites / Notice* The lab allows flexible working since there are only few mandatory meetings during the semester.
* The lab covers a variety of different techniques. Thus, participating students should have a solid foundation in the following areas: information security, operating system administration (especially Unix/Linux), and networking. Students are also expected to have a basic understanding of HTML, PHP, JavaScript, and MySQL because several examples are implemented in these languages.
* Students must be prepared to spend more than three hours per week to complete the lab assignments and the project. This applies particularly to students who do not meet the recommended requirements given above. Successful participants of the course receive 8 credits as compensation for their effort.
* All participants must sign the lab's charter and usage policy during the introduction lecture.
252-1411-00LSecurity of Wireless Networks Information W5 credits2V + 1U + 1AS. Capkun
AbstractCore Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques.
ObjectiveAfter this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure
802.11 networks.
ContentWireless channel basics. Wireless electronic warfare: jamming and target tracking. Basic security protocols in cellular, WLAN and
multi-hop networks. Recent advances in security of multi-hop networks; RFID privacy challenges and solutions.
227-0575-00LAdvanced Topics in Communication Networks (Autumn 2018) Information W6 credits2V + 2UL. Vanbever
AbstractThis class will introduce students to advanced, research-level topics in the area of communication networks, both theoretically and practically. Coverage will vary from semester to semester. Repetition for credit is possible, upon consent of the instructor. During the Fall Semester of 2018, the class will concentrate on network programmability and network data plane programming.
ObjectiveThe goal of this lecture is to introduce students to the latest advances in the area of computer networks, both theoretically and practically. The course will be divided in two main blocks. The first block (~7 weeks) will interleave classical lectures with practical exercises and paper readings. The second block (~6 weeks) will consist of a practical project involving real network hardware and which will be performed in small groups (~3 students). During the second block, lecture slots will be replaced by feedback sessions where students will be able to ask questions and get feedback about their project. The last week of the semester will be dedicated to student presentations and demonstrations.

During the Fall Semester 2018, the class will focus on programmable network data planes and will involve developing network applications on top of the the latest generation of programmable network hardware: Barefoot Network’s Tofino switch ASICs. By leveraging data-plane programmability, these applications can build deep traffic insights to, for instance, detect traffic anomalies (e.g. using Machine Learning), flexibly adapt forwarding behaviors (to improve performance), speed-up distributed applications (e.g. Map Reduce), or track network-wide health. More importantly, all this can now be done at line-rate, at forwarding speeds that can reach Terabits per second.
ContentTraditionally, computer networks have been composed of "closed" network devices (routers, switches, middleboxes) whose features, forwarding behaviors and configuration interfaces are exclusively defined on a per-vendor basis. Innovating in such networks is a slow-paced process (if at all possible): it often takes years for new features to make it to mainstream network equipments. Worse yet, managing the network is hard and prone to failures as operators have to painstakingly coordinate the behavior of heterogeneous network devices so that they, collectively, compute a compatible forwarding state. Actually, it has been shown that the majority of the network downtimes are caused by humans, not equipment failures.

Network programmability and Software-Defined Networking (SDN) have recently emerged as a way to fundamentally change the way we build, innovate, and operate computer networks, both at the software *and* at the hardware level. Specifically, programmable networks now allow: (i) to adapt how traffic flows in the entire network through standardized software interfaces; and (ii) to reprogram the hardware pipeline of the network devices, i.e. the ASICs used to forward data packets.

This year, the course will focus on reprogrammable network hardware/ASICs. It will involve hands-on experience on the world's fastest programmable switch to date (i.e. Barefoot Tofino switch ASIC).

Among others, we'll cover the following topics:
- The fundamentals and motivation behind network programmability;
- The design and optimization of network control loops;
- The use of advanced network data structures adapted for in-network execution;
- The P4 programming language and associated runtime environment;
- Hands-on examples of in-network applications solving hard problems in the area of data-centers, wide-area networks, and ISP networks.

The course will be divided in two blocks of 7 weeks. The first block will consist in traditional lectures introducing the concepts along with practical exercises to get acquainted with programmable data planes. The second block will consist of a (mandatory) project to be done in groups of few students (~3 students). The project will involve developing a fully working network application and run it on top of real programmable network hardware. Students will be free to propose their own application or pick one from a list. At the end of the course, each group will present its application in front of the class.
Lecture notesLecture notes and material will be made available before each course on the course website.
LiteratureRelevant references will be made available through the course website.
Prerequisites / NoticePrerequisites: Communication Networks (227-0120-00L) or equivalents / good programming skills (in any language) are expected as both the exercices and the final project will involve coding.
  •  Page  1  of  6 Next page Last page     All