The spring semester 2021 will take place online until further notice. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers.

Search result: Catalogue data in Autumn Semester 2018

Mathematics Master Information
Core Courses
For the Master's degree in Applied Mathematics the following additional condition (not manifest in myStudies) must be obeyed: At least 15 of the required 28 credits from core courses and electives must be acquired in areas of applied mathematics and further application-oriented fields.
Bachelor Core Courses: Applied Mathematics ...
Further restrictions apply, but in particular:
401-3601-00L Probability Theory can only be recognised for the Master Programme if neither 401-3642-00L Brownian Motion and Stochastic Calculus nor 401-3602-00L Applied Stochastic Processes has been recognised for the Bachelor Programme.
402-0205-00L Quantum Mechanics I is eligible as an applied core course, but only if 402-0224-00L Theoretical Physics (offered for the last time in FS 2016) isn't recognised for credits (neither in the Bachelor's nor in the Master's programme).
For the category assignment take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.
NumberTitleTypeECTSHoursLecturers
401-3601-00LProbability Theory Information
At most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory
can be recognised for the Master's degree in Mathematics or Applied Mathematics.
E-10 credits4V + 1UA.‑S. Sznitman
AbstractBasics of probability theory and the theory of stochastic processes in discrete time
ObjectiveThis course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains.
ContentThis course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains.
Lecture notesavailable, will be sold in the course
LiteratureR. Durrett, Probability: Theory and examples, Duxbury Press 1996
H. Bauer, Probability Theory, de Gruyter 1996
J. Jacod and P. Protter, Probability essentials, Springer 2004
A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006
D. Williams, Probability with martingales, Cambridge University Press 1991
402-0205-00LQuantum Mechanics I Information W10 credits3V + 2UM. Gaberdiel
AbstractIntroduction to non-relativistic single-particle quantum mechanics. In particular, the basic concepts of quantum mechanics, such as the quantisation of classical systems, wave functions, the description of observables as operators on a Hilbert space, as well as the formulation of symmetries, will be discussed. Basic phenomena will be analysed and illustrated by generic examples.
ObjectiveIntroduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems.
ContentKeywords: Schrödinger equation, basic formalism of quantum mechanics (states, operators, commutators, measuring process), symmetries (translations, rotations, discrete symmetries), quantum mechanics in one dimension, spherically symmetric problems in three dimensions, hydrogen atom, harmonic oscillator, angular momentum, spin, addition of angular momenta, relation between QM and classical physics.
LiteratureJ.J. Sakurai: Modern Quantum Mechanics
A. Messiah: Quantum Mechanics I
S. Weinberg: Lectures on Quantum Mechanics
  •  Page  1  of  1