# Search result: Catalogue data in Autumn Semester 2018

Mathematics Master | ||||||

Electives For the Master's degree in Applied Mathematics the following additional condition (not manifest in myStudies) must be obeyed: At least 15 of the required 28 credits from core courses and electives must be acquired in areas of applied mathematics and further application-oriented fields. | ||||||

Electives: Pure Mathematics | ||||||

Selection: Algebra, Number Thy, Topology, Discrete Mathematics, Logic | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

401-3113-68L | Exponential Sums over Finite Fields | W | 8 credits | 4G | E. Kowalski | |

Abstract | Exponential sums over finite fields arise in many problems of number theory. We will discuss the elementary aspects of the theory (centered on the Riemann Hypothesis for curves, following Stepanov's method) and survey the formalism arising from Deligne's general form of the Riemann Hypothesis over finite fields. We will then discuss various applications, especially in analytic number theory. | |||||

Objective | The goal is to understand both the basic results on exponential sums in one variable, and the general formalism of Deligne and Katz that underlies estimates for much more general types of exponential sums, including the "trace functions" over finite fields. | |||||

Content | Examples of elementary exponential sums The Riemann Hypothesis for curves and its applications Definition of trace functions over finite fields The formalism of the Riemann Hypothesis of Deligne Selected applications | |||||

Lecture notes | Lectures notes from various sources will be provided | |||||

Literature | Kowalski, "Exponential sums over finite fields, I: elementary methods: Iwaniec-Kowalski, "Analytic number theory", chapter 11 Fouvry, Kowalski and Michel, "Trace functions over finite fields and their applications" | |||||

401-3100-68L | Introduction to Analytic Number Theory | W | 8 credits | 4G | I. N. Petrow | |

Abstract | This course is an introduction to classical multiplicative analytic number theory. The main object of study is the distribution of the prime numbers in the integers. We will study arithmetic functions and learn the basic tools for manipulating and calculating their averages. We will make use of generating series and tools from complex analysis. | |||||

Objective | The main goal for the course is to prove the prime number theorem in arithmetic progressions: If gcd(a,q)=1, then the number of primes p = a mod q with p<x is approximately (1/phi(q))*(x/log x), as x tends to infinity, where phi(q) is the Euler totient function. | |||||

Content | Developing the necessary techniques and theory to prove the prime number theorem in arithmetic progressions will lead us to the study of prime numbers by Chebyshev's method, to study techniques for summing arithmetic functions by Dirichlet series, multiplicative functions, L-series, characters of a finite abelian group, theory of integral functions, and a detailed study of the Riemann zeta function and Dirichlet's L-functions. | |||||

Lecture notes | Lecture notes will be provided for the course. | |||||

Literature | Multiplicative Number Theory by Harold Davenport Multiplicative Number Theory I. Classical Theory by Hugh L. Montgomery and Robert C. Vaughan Analytic Number Theory by Henryk Iwaniec and Emmanuel Kowalski | |||||

Prerequisites / Notice | Complex analysis Group theory Linear algebra Familiarity with the Fourier transform and Fourier series preferable but not required. | |||||

401-3059-00L | Combinatorics IIDoes not take place this semester. | W | 4 credits | 2G | N. Hungerbühler | |

Abstract | The course Combinatorics I and II is an introduction into the field of enumerative combinatorics. | |||||

Objective | Upon completion of the course, students are able to classify combinatorial problems and to apply adequate techniques to solve them. | |||||

Content | Contents of the lectures Combinatorics I and II: congruence transformation of the plane, symmetry groups of geometric figures, Euler's function, Cayley graphs, formal power series, permutation groups, cycles, Bunside's lemma, cycle index, Polya's theorems, applications to graph theory and isomers. |

- Page 1 of 1