Suchergebnis: Katalogdaten im Frühjahrssemester 2019

DAS in Data Science Information
Big Data Systems
252-3900-00LBig Data for Engineers Information
This course is not intended for Computer Science and Data Science students!
W6 KP2V + 2U + 1AG. Fourny
KurzbeschreibungThis course is part of the series of database lectures offered to all ETH departments, together with Information Systems for Engineers. It introduces the most recent advances in the database field: how do we scale storage and querying to Petabytes of data, with trillions of records? How do we deal with heterogeneous data sets? How do we deal with alternate data shapes like trees and graphs?
LernzielThe key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations.

This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.
InhaltThis course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe.

It targets specifically students with a scientific or Engineering, but not Computer Science, background.

The material is organized along three axes: data in the large, data in the small, data in the very small. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.
- physical storage (HDFS, S3)
- logical storage (key-value stores, document stores, column stores, key-value stores, data warehouses)
- data formats and syntaxes (XML, JSON, CSV)
- data shapes and models (tables, trees, graphs)
- an overview of programming languages with a focus on their type systems (SQL, XQuery)
- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)
- paradigms for parallel processing (MapReduce) and technologies (Hadoop, Spark)
- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)
- applications.

Large scale analytics and machine learning are outside of the scope of this course.
LiteraturPapers from scientific conferences and journals. References will be given as part of the course material during the semester.
Voraussetzungen / BesonderesThis course is not intended for Computer Science and Data Science students. Computer Science and Data Science students interested in Big Data MUST attend the Master's level Big Data lecture, offered in Fall.

Requirements: programming knowledge (Java, C++, Python, PHP, ...) as well as basic knowledge on databases (SQL). If you have already built your own website with a backend SQL database, this is perfect.

Attendance is especially recommended to those who attended Information Systems for Engineers last Fall, which introduced the "good old databases of the 1970s" (SQL, tables and cubes). However, this is not a strict requirement, and it is also possible to take the lectures in reverse order.
263-2300-00LHow To Write Fast Numerical Code Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 84.

Prerequisite: Master student, solid C programming skills.

Takes place the last time in this form.
W6 KP3V + 2UM. Püschel
KurzbeschreibungThis course introduces the student to the foundations and state-of-the-art techniques in developing high performance software for mathematical functionality such as matrix operations, transforms, and others. The focus is on optimizing for a single core. This includes optimizing for the memory hierarchy, for special instruction sets, and the possible use of automatic performance tuning.
LernzielSoftware performance (i.e., runtime) arises through the complex interaction of algorithm, its implementation, the compiler used, and the microarchitecture the program is run on. The first goal of the course is to provide the student with an understanding of this "vertical" interaction, and hence software performance, for mathematical functionality. The second goal is to teach a systematic strategy how to use this knowledge to write fast software for numerical problems. This strategy will be trained in several homeworks and a semester-long group project.
InhaltThe fast evolution and increasing complexity of computing platforms pose a major challenge for developers of high performance software for engineering, science, and consumer applications: it becomes increasingly harder to harness the available computing power. Straightforward implementations may lose as much as one or two orders of magnitude in performance. On the other hand, creating optimal implementations requires the developer to have an understanding of algorithms, capabilities and limitations of compilers, and the target platform's architecture and microarchitecture.

This interdisciplinary course introduces the student to the foundations and state-of-the-art techniques in high performance mathematical software development using important functionality such as matrix operations, transforms, filters, and others as examples. The course will explain how to optimize for the memory hierarchy, take advantage of special instruction sets, and other details of current processors that require optimization. The concept of automatic performance tuning is introduced. The focus is on optimization for a single core; thus, the course complements others on parallel and distributed computing.

Finally a general strategy for performance analysis and optimization is introduced that the students will apply in group projects that accompany the course.
263-3501-00LFuture Internet Information
Previously called Advanced Computer Networks
W6 KP1V + 1U + 3AA. Singla
KurzbeschreibungThis course will discuss recent advances in networking, with a focus on the Internet, with topics ranging from the algorithmic design of applications like video streaming to the likely near-future of satellite-based networking.
LernzielThe goals of the course are to build on basic undergraduate-level networking, and provide an understanding of the tradeoffs and existing technology in the design of large, complex networked systems, together with concrete experience of the challenges through a series of lab exercises.
InhaltThe focus of the course is on principles, architectures, protocols, and applications used in modern networked systems. Example topics include:

- How video streaming services like Netflix work, and research on improving their performance.
- How Web browsing could be made faster
- How the Internet's protocols are improving
- Exciting developments in satellite-based networking (ala SpaceX)
- The role of data centers in powering Internet services

A series of programming assignments will form a substantial part of the course grade.
SkriptLecture slides will be made available at the course Web site:
LiteraturNo textbook is required, but there will be regularly assigned readings from research literature, liked to the course Web site:
Voraussetzungen / BesonderesAn undergraduate class covering the basics of networking, such as Internet routing and TCP. At ETH, Computer Networks (252-0064-00L) and Communication Networks (227-0120-00L) suffice. Similar courses from other universities are acceptable too.
  •  Seite  1  von  1