Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind. Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

Suchergebnis: Katalogdaten im Frühjahrssemester 2020

DAS in Cyber Security Information
Die Kernfächer werden nur im Herbstsemester angeboten.
252-0408-00LCryptographic Protocols Information W6 KP2V + 2U + 1AM. Hirt, U. Maurer
KurzbeschreibungThe course presents a selection of hot research topics in cryptography. The choice of topics varies and may include provable security, interactive proofs, zero-knowledge protocols, secret sharing, secure multi-party computation, e-voting, etc.
LernzielIndroduction to a very active research area with many gems and paradoxical
results. Spark interest in fundamental problems.
InhaltThe course presents a selection of hot research topics in cryptography. The choice of topics varies and may include provable security, interactive proofs, zero-knowledge protocols, secret sharing, secure multi-party computation, e-voting, etc.
Skriptthe lecture notes are in German, but they are not required as the entire
course material is documented also in other course material (in english).
Voraussetzungen / BesonderesA basic understanding of fundamental cryptographic concepts
(as taught for example in the course Information Security or
in the course Cryptography Foundations) is useful, but not required.
263-3501-00LFuture Internet Information W6 KP1V + 1U + 3AA. Singla
KurzbeschreibungThis course will discuss recent advances in networking, with a focus on the Internet, with topics ranging from the algorithmic design of applications like video streaming to the likely near-future of satellite-based networking.
LernzielThe goals of the course are to build on basic undergraduate-level networking, and provide an understanding of the tradeoffs and existing technology in the design of large, complex networked systems, together with concrete experience of the challenges through a series of lab exercises.
InhaltThe focus of the course is on principles, architectures, protocols, and applications used in modern networked systems. Example topics include:

- How video streaming services like Netflix work, and research on improving their performance.
- How Web browsing could be made faster
- How the Internet's protocols are improving
- Exciting developments in satellite-based networking (ala SpaceX)
- The role of data centers in powering Internet services

A series of programming assignments will form a substantial part of the course grade.
SkriptLecture slides will be made available at the course Web site: https://ndal.ethz.ch/courses/fi.html
LiteraturNo textbook is required, but there will be regularly assigned readings from research literature, liked to the course Web site: https://ndal.ethz.ch/courses/fi.html.
Voraussetzungen / BesonderesAn undergraduate class covering the basics of networking, such as Internet routing and TCP. At ETH, Computer Networks (252-0064-00L) and Communication Networks (227-0120-00L) suffice. Similar courses from other universities are acceptable too.
263-4600-00LFormal Methods for Information Security Information W5 KP2V + 1U + 1AR. Sasse, C. Sprenger
KurzbeschreibungThe course focuses on formal methods for the modelling and analysis of security protocols for critical systems, ranging from authentication protocols for network security to electronic voting protocols and online banking.
LernzielThe students will learn the key ideas and theoretical foundations of formal modelling and analysis of security protocols. The students will complement their theoretical knowledge by solving practical exercises, completing a small project, and using state-of-the-art tools.
InhaltThe course treats formal methods mainly for the modelling and analysis of security protocols. Cryptographic protocols (such as SSL/TLS, SSH, Kerberos, SAML single-sign on, and IPSec) form the basis for secure communication and business processes. Numerous attacks on published protocols show that the design of cryptographic protocols is extremely error-prone. A rigorous analysis of these protocols is therefore indispensable, and manual analysis is insufficient. The lectures cover the theoretical basis for the (tool-supported) formal modeling and analysis of such protocols. Specifically, we discuss their operational semantics, the formalization of security properties, and techniques and algorithms for their verification.

In addition to the classical security properties for confidentiality and authentication, we will study strong secrecy and privacy properties. We will discuss electronic voting protocols, and RFID protocols (a staple of the Internet of Things), where these properties are central. The accompanying tutorials provide an opportunity to apply the theory and tools to concrete protocols. Moreover, we will discuss methods to abstract and refine security protocols and the link between symbolic protocol models and cryptographic models.

Furthermore, we will also present a security notion for general systems based on non-interference as well as language-based information flow security where non-interference is enforced via a type system.
263-4660-00LApplied Cryptography Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 150.
W8 KP3V + 2U + 2PK. Paterson
KurzbeschreibungThis course will introduce the basic primitives of cryptography, using rigorous syntax and game-based security definitions. The course will show how these primitives can be combined to build cryptographic protocols and systems.
LernzielThe goal of the course is to put students' understanding of cryptography on sound foundations, to enable them to start to build well-designed cryptographic systems, and to expose them to some of the pitfalls that arise when doing so.
InhaltBasic symmetric primitives (block ciphers, modes, hash functions); generic composition; AEAD; basic secure channels; basic public key primitives (encryption,signature, DH key exchange); ECC; randomness; applications.
LiteraturTextbook: Boneh and Shoup, “A Graduate Course in Applied Cryptography”, https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf.
Voraussetzungen / BesonderesIdeally, students will have taken the D-INFK Bachelors course “Information Security" or an equivalent course at Bachelors level.
  •  Seite  1  von  1