Search result: Catalogue data in Autumn Semester 2020

Robotics, Systems and Control Master Information
Core Courses
NumberTitleTypeECTSHoursLecturers
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) I Information W4 credits4GP. Koumoutsakos, S. M. Martin
AbstractThis course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.
ObjectiveWith manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.

The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.
Content1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86)

2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)

3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models

4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis

5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods
Lecture notesLink
Class notes, handouts
Literature• An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann
• Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
• Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
• Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
• Lecture notes
Prerequisites / NoticeStudents should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++. The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.
151-0323-00LAutonomous Mobility on Demand: From Car to Fleet Information Restricted registration - show details
Number of participants limited to 30.
W4 credits4GJ. Tani, A. Censi
AbstractAutonomous Mobility on Demand systems based on self-driving cars will make a huge impact in the world. This class describes the basics of modeling, perception, planning, control and learning for self-driving cars. The focus is on integration and co-design of components and behaviors. The course has a heavy experimental component based on the Duckietown platform.
ObjectiveThe students will learn how to design, implement and operate all parts of an architecture for a complex multi-robot system performing non trivial tasks.
ContentDevelopment tools and best practices for software development of open source projects; single autonomous car functionalities (perception, planning, modeling and control, based primarily on vision data, complemented by learning based approaches).
Lecture notesCourse notes will be provided for free in an electronic form. Each student will receive a Duckiebot and a small city loop.
LiteratureCourse notes will be provided for free in an electronic form. These are some books that can be used to provide background information or consulted as references: (1) Siegwart, Nourbakhsh, Scaramuzza - Introduction to autonomous mobile robots; (2) Norvig, Russell - Artificial Intelligent, a modern approach. (3) Peter Corke - Robotics Vision and Control (4) Oussama Khatib, Bruno Siciliano - Handbook of Robotics
Prerequisites / NoticeThis course is also known as "Duckietown". Students should have taken a basic course in probability theory, computer vision, control systems, and should be familiar with basic programming (Python) and Linux use.

The course will be fully remote. Students will need ~5 square meters of free space at their place of work to set up the Duckietown platform, necessary to perform the learning activities and exercises.
151-0371-00LAdvanced Model Predictive Control Restricted registration - show details W4 credits2V + 1UM. Zeilinger, A. Carron, L. Hewing
AbstractModel predictive control (MPC) has established itself as a powerful control technique for complex systems under state and input constraints. This course discusses the theory and application of recent advanced MPC concepts, focusing on system uncertainties and safety, as well as data-driven formulations and learning-based control.
ObjectiveDesign, implement and analyze advanced MPC formulations for robust and stochastic uncertainty descriptions, in particular with data-driven formulations.
ContentTopics include
- Review of Bayesian statistics, stochastic systems and Stochastic Optimal Control
- Nominal MPC for uncertain systems (nominal robustness)
- Robust MPC
- Stochastic MPC
- Set-membership Identification and robust data-driven MPC
- Bayesian regression and stochastic data-driven MPC
- MPC as safety filter for reinforcement learning
Lecture notesLecture notes will be provided.
Prerequisites / NoticeBasic courses in control, advanced course in optimal control, basic MPC course (e.g. 151-0660-00L Model Predictive Control) strongly recommended.
Background in linear algebra and stochastic systems recommended.
151-0509-00LMicroscale Acoustofluidics Restricted registration - show details W4 credits3GJ. Dual
AbstractIn this lecture the basics as well as practical aspects (from modelling to design and fabrication ) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices.
ObjectiveUnderstanding acoustophoresis, the design of devices and potential applications
ContentLinear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices
Lecture notesYes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
LiteratureMicroscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
Prerequisites / NoticeSolid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework.
151-0563-01LDynamic Programming and Optimal Control Information W4 credits2V + 1UR. D'Andrea
AbstractIntroduction to Dynamic Programming and Optimal Control.
ObjectiveCovers the fundamental concepts of Dynamic Programming & Optimal Control.
ContentDynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.
LiteratureDynamic Programming and Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.
Prerequisites / NoticeRequirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.
151-0593-00LEmbedded Control Systems
Does not take place this semester.
W4 credits6G
AbstractThis course provides a comprehensive overview of embedded control systems. The concepts introduced are implemented and verified on a microprocessor-controlled haptic device.
ObjectiveFamiliarize students with main architectural principles and concepts of embedded control systems.
ContentAn embedded system is a microprocessor used as a component in another piece of technology, such as cell phones or automobiles. In this intensive two-week block course the students are presented the principles of embedded digital control systems using a haptic device as an example for a mechatronic system. A haptic interface allows for a human to interact with a computer through the sense of touch.

Subjects covered in lectures and practical lab exercises include:
- The application of C-programming on a microprocessor
- Digital I/O and serial communication
- Quadrature decoding for wheel position sensing
- Queued analog-to-digital conversion to interface with the analog world
- Pulse width modulation
- Timer interrupts to create sampling time intervals
- System dynamics and virtual worlds with haptic feedback
- Introduction to rapid prototyping
Lecture notesLecture notes, lab instructions, supplemental material
Prerequisites / NoticePrerequisite courses are Control Systems I and Informatics I.

This course is restricted to 33 students due to limited lab infrastructure. Interested students please contact Marianne Schmid (E-Mail: Link)
After your reservation has been confirmed please register online at Link.

Detailed information can be found on the course website
Link
151-0601-00LTheory of Robotics and Mechatronics Information W4 credits3GP. Korba, S. Stoeter
AbstractThis course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.
ObjectiveRobotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.
ContentAn introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.
Lecture notesavailable.
151-0604-00LMicrorobotics Information W4 credits3GB. Nelson, N. Shamsudhin
AbstractMicrorobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination.
ObjectiveThe objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
ContentMain topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots
Lecture notesThe powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.
Prerequisites / NoticeThe lecture will be taught in English.
151-0632-00LVision Algorithms for Mobile Robotics Information Restricted registration - show details
Number of participants limited to 55
Registration is on a first come, first served basis and SPACE IS LIMITED!
W4 credits2V + 2UD. Scaramuzza
AbstractFor a robot to be autonomous, it has to perceive and understand the world around it. This course introduces you to the key computer vision algorithms used in mobile robotics, such as feature extraction, structure from motion, dense reconstruction, tracking, image retrieval, event-based vision, and visual-inertial odometry (the algorithms behind Hololens, Oculus Quest, and the NASA Mars rovers).
ObjectiveLearn the fundamental computer vision algorithms used in mobile robotics, in particular: filtering, feature extraction, structure from motion, multiple view geometry, dense reconstruction, tracking, image retrieval, event-based vision, and visual-inertial odometry and Simultaneous Localization And Mapping (SLAM) (the algorithms behind Hololens, Facebook-Oculus Quest, and the NASA Mars rovers).
ContentEach lecture will be followed by a lab session where you will learn to implement a building block of a visual odometry algorithm in Matlab. By the end of the course, you will integrate all these building blocks into a working visual odometry algorithm.
Lecture notesLecture slides will be made available on the course official website: Link
Literature[1] Computer Vision: Algorithms and Applications, by Richard Szeliski, Springer, 2010.
[2] Robotics Vision and Control: Fundamental Algorithms, by Peter Corke 2011.
[3] An Invitation to 3D Vision, by Y. Ma, S. Soatto, J. Kosecka, S.S. Sastry.
[4] Multiple view Geometry, by R. Hartley and A. Zisserman.
[5] Introduction to autonomous mobile robots 2nd Edition, by R. Siegwart, I.R. Nourbakhsh, and D. Scaramuzza, February, 2011
Prerequisites / NoticeFundamentals of algebra, geomertry, matrix calculus, and Matlab programming.
151-0851-00LRobot Dynamics Information Restricted registration - show details W4 credits2V + 2UM. Hutter, R. Siegwart
AbstractWe will provide an overview on how to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing.
ObjectiveThe primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems.
ContentThe course consists of three parts: First, we will refresh and deepen the student's knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will build upon the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics.
Prerequisites / NoticeThe contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics.
151-1116-00LIntroduction to Aircraft and Car AerodynamicsW4 credits3GJ. Wildi
AbstractAircraft aerodynamics: Atmosphere; aerodynamic forces (lift, drag); thrust.
Vehicle aerodynamics: Aerodynamic and mass forces, drag, lift, car aerodynamics and performence. Passenger cars, trucks, racing cars.
ObjectiveAn introduction to the basic principles and interrelationships of aircraft and automotive aerodynamics.
To understand the basic relations of the origin of aerodynamic forces (ie lift, drag). To quantify the aerodynamic forces for basic configurations of aercraft and car components.
Illustration of the intrinsic problems and results using examples.
Using experimental and theoretical methods to illustrate possibilities and limits.
ContentAircraft aerodynamics: atmosphere, aerodynamic forces (ascending force: profile, wings. Resistance, residual resistance, induced resistance); thrust (overview of the propulsion system, aerodynamics of the propellers), introduction to static longitudinal stability.

Automobile aerodynamics: Basic principles: aerodynamic force and the force of inertia, resistance, drive, aerodynamic and driving performance. Cars commercial vehicles, racing cars.
Lecture notes1.) Grundlagen der Flugtechnik (Basics of flight science, script in german language)
2.) Einführung in die Fahrzeugaerodynamik (Introduction in car aerodynamics, script in german language)
LiteratureEnglish literature covering the content of the course:
- Anderson Jr, John D: Introduction to Flight, Mc Graw Hill, Ed 06, 2007; ISBN: 9780073529394
- Mc Cormick, B.W.: Aerodynamics, Aeronautics and Flight Mechanics, John Wiley and Sons, 1979
- Hucho, Wolf-Heinrich: Aerodynamics of Road Vehicles, SAE International, 1998
151-0532-00LNonlinear Dynamics and Chaos I Information W4 credits2V + 2UG. Haller
AbstractBasic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.
ObjectiveThis course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.
Content(1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.

(2) Near equilibrium dynamics: Linear and Lyapunov stability

(3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations

(4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.

(5) Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance
Lecture notesThe class lecture notes will be posted electronically after each lecture. Students should not rely on these but prepare their own notes during the lecture.
Prerequisites / Notice- Prerequisites: Analysis, linear algebra and a basic course in differential equations.

- Exam: two-hour written exam in English.

- Homework: A homework assignment will be due roughly every other week. Hints to solutions will be posted after the homework due dates.
227-0102-00LDiscrete Event Systems Information W6 credits4GL. Thiele, L. Vanbever, R. Wattenhofer
AbstractIntroduction to discrete event systems. We start out by studying popular models of discrete event systems. In the second part of the course we analyze discrete event systems from an average-case and from a worst-case perspective. Topics include: Automata and Languages, Specification Models, Stochastic Discrete Event Systems, Worst-Case Event Systems, Verification, Network Calculus.
ObjectiveOver the past few decades the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss).

The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems.

In this lecture we give an introduction to discrete event systems. We start out the course by studying popular models of discrete event systems, such as automata and Petri nets. In the second part of the course we analyze discrete event systems. We first examine discrete event systems from an average-case perspective: we model discrete events as stochastic processes, and then apply Markov chains and queuing theory for an understanding of the typical behavior of a system. In the last part of the course we analyze discrete event systems from a worst-case perspective using the theory of online algorithms and adversarial queuing.
Content1. Introduction
2. Automata and Languages
3. Smarter Automata
4. Specification Models
5. Stochastic Discrete Event Systems
6. Worst-Case Event Systems
7. Network Calculus
Lecture notesAvailable
Literature[bertsekas] Data Networks
Dimitri Bersekas, Robert Gallager
Prentice Hall, 1991, ISBN: 0132009161

[borodin] Online Computation and Competitive Analysis
Allan Borodin, Ran El-Yaniv.
Cambridge University Press, 1998

[boudec] Network Calculus
J.-Y. Le Boudec, P. Thiran
Springer, 2001

[cassandras] Introduction to Discrete Event Systems
Christos Cassandras, Stéphane Lafortune.
Kluwer Academic Publishers, 1999, ISBN 0-7923-8609-4

[fiat] Online Algorithms: The State of the Art
A. Fiat and G. Woeginger

[hochbaum] Approximation Algorithms for NP-hard Problems (Chapter 13 by S. Irani, A. Karlin)
D. Hochbaum

[schickinger] Diskrete Strukturen (Band 2: Wahrscheinlichkeitstheorie und Statistik)
T. Schickinger, A. Steger
Springer, Berlin, 2001

[sipser] Introduction to the Theory of Computation
Michael Sipser.
PWS Publishing Company, 1996, ISBN 053494728X
227-0103-00LControl Systems Information W6 credits2V + 2UF. Dörfler
AbstractStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
ObjectiveStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
ContentProcess automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation.
LiteratureK. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010.
R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007.
G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010.
J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014.
J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014.
Prerequisites / NoticePrerequisites: Signal and Systems Theory II.

MATLAB is used for system analysis and simulation.
227-0124-00LEmbedded Systems Information W6 credits4GL. Thiele
AbstractAn embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. The course covers theoretical and practical aspects of embedded system design and includes a series of lab sessions.
ObjectiveUnderstanding specific requirements and problems arising in embedded system applications.

Understanding architectures and components, their hardware-software interfaces, the memory architecture, communication between components, embedded operating systems, real-time scheduling theory, shared resources, low-power and low-energy design as well as hardware architecture synthesis.

Using the formal models and methods in embedded system design in practical applications using the programming language C, the operating system FreeRTOS, a commercial embedded system platform and the associated design environment.
ContentAn embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. For example, they are part of industrial machines, agricultural and process industry devices, automobiles, medical equipment, cameras, household appliances, airplanes, sensor networks, internet-of-things, as well as mobile devices.

The focus of this lecture is on the design of embedded systems using formal models and methods as well as computer-based synthesis methods. Besides, the lecture is complemented by laboratory sessions where students learn to program in C, to base their design on the embedded operating systems FreeRTOS, to use a commercial embedded system platform including sensors, and to edit/debug via an integrated development environment.

Specifically the following topics will be covered in the course: Embedded system architectures and components, hardware-software interfaces and memory architecture, software design methodology, communication, embedded operating systems, real-time scheduling, shared resources, low-power and low-energy design, hardware architecture synthesis.

More information is available at Link .
Lecture notesThe following information will be available: Lecture material, publications, exercise sheets and laboratory documentation at Link .
LiteratureP. Marwedel: Embedded System Design, Springer, ISBN 978-3-319-56045-8, 2018.

G.C. Buttazzo: Hard Real-Time Computing Systems. Springer Verlag, ISBN 978-1-4614-0676-1, 2011.

Edward A. Lee and Sanjit A. Seshia: Introduction to Embedded Systems, A Cyber-Physical Systems Approach, Second Edition, MIT Press, ISBN 978-0-262-53381-2, 2017.

M. Wolf: Computers as Components – Principles of Embedded System Design. Morgan Kaufman Publishers, ISBN 978-0-128-05387-4, 2016.
Prerequisites / NoticePrerequisites: Basic knowledge in computer architectures and programming.
227-0225-00LLinear System TheoryW6 credits5GM. Colombino
AbstractThe class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems.
ObjectiveStudents should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.
Content- Proof techniques and practices.
- Linear spaces, normed linear spaces and Hilbert spaces.
- Ordinary differential equations, existence and uniqueness of solutions.
- Continuous and discrete-time, time-varying linear systems. Time domain solutions. Time invariant systems treated as a special case.
- Controllability and observability, duality. Time invariant systems treated as a special case.
- Stability and stabilization, observers, state and output feedback, separation principle.
Lecture notesAvailable on the course Moodle platform.
Prerequisites / NoticeSufficient mathematical maturity, in particular in linear algebra, analysis.
227-0247-00LPower Electronic Systems I Information W6 credits4GJ. W. Kolar
AbstractBasics of the switching behavior, gate drive and snubber circuits of power semiconductors are discussed. Soft-switching and resonant DC/DC converters are analyzed in detail and high frequency loss mechanisms of magnetic components are explained. Space vector modulation of three-phase inverters is introduced and the main power components are designed for typical industry applications.
ObjectiveDetailed understanding of the principle of operation and modulation of advanced power electronics converter systems, especially of zero voltage switching and zero current switching non-isolated and isolated DC/DC converter systems and three-phase voltage DC link inverter systems. Furthermore, the course should convey knowledge on the switching frequency related losses of power semiconductors and inductive power components and introduce the concept of space vector calculus which provides a basis for the comprehensive discussion of three-phase PWM converters systems in the lecture Power Electronic Systems II.
ContentBasics of the switching behavior and gate drive circuits of power semiconductor devices and auxiliary circuits for minimizing the switching losses are explained. Furthermore, zero voltage switching, zero current switching, and resonant DC/DC converters are discussed in detail; the operating behavior of isolated full-bridge DC/DC converters is detailed for different secondary side rectifier topologies; high frequency loss mechanisms of magnetic components of converter circuits are explained and approximate calculation methods are presented; the concept of space vector calculus for analyzing three-phase systems is introduced; finally, phase-oriented and space vector modulation of three-phase inverter systems are discussed related to voltage DC link inverter systems and the design of the main power components based on analytical calculations is explained.
Lecture notesLecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features.
Prerequisites / NoticePrerequisites: Introductory course on power electronics.
227-0447-00LImage Analysis and Computer Vision Information W6 credits3V + 1UL. Van Gool, E. Konukoglu, F. Yu
AbstractLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. Deep learning and Convolutional Neural Networks.
ObjectiveOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
ContentThis course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.
The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.
The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.
Lecture notesCourse material Script, computer demonstrations, exercises and problem solutions
Prerequisites / NoticePrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux.
The course language is English.
227-0526-00LPower System AnalysisW6 credits4GG. Hug
AbstractThe goal of this course is understanding the stationary and dynamic problems in electrical power systems. The course includes the development of stationary models of the electrical network, their mathematical representation and special characteristics and solution methods of large linear and non-linear systems of equations related to electrical power networks.
ObjectiveThe goal of this course is understanding the stationary and dynamic problems in electrical power systems and the application of analysis tools in steady and dynamic states.
ContentThe course includes the development of stationary models of the electrical network, their mathematical representation and special characteristics and solution methods of large linear and non-linear systems of equations related to electrical power grids. Approaches such as the Newton-Raphson algorithm applied to power flow equations, superposition technique for short-circuit analysis, equal area criterion and nose curve analysis are discussed as well as power flow computation techniques for distribution grids.
Lecture notesLecture notes.
227-0689-00LSystem Identification Information W4 credits2V + 1UR. Smith
AbstractTheory and techniques for the identification of dynamic models from experimentally obtained system input-output data.
ObjectiveTo provide a series of practical techniques for the development of dynamical models from experimental data, with the emphasis being on the development of models suitable for feedback control design purposes. To provide sufficient theory to enable the practitioner to understand the trade-offs between model accuracy, data quality and data quantity.
ContentIntroduction to modeling: Black-box and grey-box models; Parametric and non-parametric models; ARX, ARMAX (etc.) models.

Predictive, open-loop, black-box identification methods. Time and frequency domain methods. Subspace identification methods.

Optimal experimental design, Cramer-Rao bounds, input signal design.

Parametric identification methods. On-line and batch approaches.

Closed-loop identification strategies. Trade-off between controller performance and information available for identification.
Literature"System Identification; Theory for the User" Lennart Ljung, Prentice Hall (2nd Ed), 1999.

"Dynamic system identification: Experimental design and data analysis", GC Goodwin and RL Payne, Academic Press, 1977.
Prerequisites / NoticeControl systems (227-0216-00L) or equivalent.
  •  Page  1  of  2 Next page Last page     All