Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Informatik Bachelor Information
Wahlfächer
Es können auch Lehrveranstaltungen aus dem Master-Studiengang in Informatik gewählt werden. Es liegt in der Verantwortung der Studierenden, sicherzustellen, dass sie die Voraussetzungen für diese Lehrveranstaltungen erfüllen.
NummerTitelTypECTSUmfangDozierende
252-0055-00LInformationstheorie Information W4 KP2V + 1UJ. M. Buhmann
KurzbeschreibungDie Vorlesung vermittelt die Grundlagen von Shannons Informations- und Codierungstheorie. Die wichtigsten Themen sind: Entropie, Information, Datenkompression, Kanalcodierung, Codes.
LernzielZiel der Vorlesung ist es, sowohl mit den theoretischen Grundlagen der Informationstheorie vertraut zu machen, als auch den praktischen Einsatz der Theorie anhand ausgewählter Beispiele aus der Datenkompression und -codierung zu illustrieren.
InhaltEinführung und Motivation, Grundlagen der Wahrscheinlichkeitstheorie, Entropie und Information, Kraft-Ungleichung, Schranken für die erwartete Länge von Quellcodes, Huffman-Codierung, asympotische Äquipartitionseigenschaft und typische Sequenzen, Shannons Quellcodierungstheorem, Kanalkapazität und Kanalcodierung, Shannons Kanalcodierungstheorem, Beispiele
LiteraturT. Cover, J. Thomas: Elements of Information Theory, John Wiley, 1991.

D. MacKay, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003.


C. Shannon, The Mathematical Theory of Communication, 1948.
252-0341-01LInformation Retrieval Information Belegung eingeschränkt - Details anzeigen W4 KP2V + 1UG. Fourny
KurzbeschreibungThis course gives an introduction to information retrieval with a focus on text documents and unstructured data.

Main topics comprise document modelling, various retrieval techniques, indexing techniques, query frameworks, optimization, evaluation and feedback.
LernzielWe keep accumulating data at an unprecedented pace, much faster than we can process it. While Big Data techniques contribute solutions accounting for structured or semi-structured shapes such as tables, trees, graphs and cubes, the study of unstructured data is a field of its own: Information Retrieval.

After this course, you will have in-depth understanding of broadly established techniques in order to model, index and query unstructured data (aka, text), including the vector space model, boolean queries, terms, posting lists, dealing with errors and imprecision.

You will know how to make queries faster and how to make queries work on very large datasets. You will be capable of evaluating the quality of an information retrieval engine.

Finally, you will also have knowledge about alternate models (structured data, probabilistic retrieval, language models) as well as basic search algorithms on the web such as Google's PageRank.
Inhalt1. Introduction

2. Boolean retrieval: the basics of how to index and query unstructured data.

3. Term vocabulary: pre-processing the data prior to indexing: building the term vocabulary, posting lists.

4. Tolerant retrieval: dealing with spelling errors: tolerant retrieval.

5. Index construction: scaling up to large datasets.

6. Index compression: how to improve performance by compressing the index in various ways.

7. Ranked retrieval: how to ranking results with scores and the vector space model

8. Scoring in a bigger picture: taking ranked retrieval to the next level with various improvements, including inexact retrieval

9. Probabilistic information retrieval: how to leverage Bayesian techniques to build an alternate, probabilistic model for information retrieval

10. Language models: another alternate model based on languages, automata and document generation

11. Evaluation: precision, recall and various other measurements of quality

12. Web search: PageRank

13. Wrap-up.

The lecture structure will follow the pedagogical approach of the book (see material).

The field of information retrieval also encompasses machine learning aspects. However, we will make a conscious effort to limit overlaps, and be complementary with, the Introduction to Machine Learning lecture.
LiteraturC. D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge University Press.
Voraussetzungen / BesonderesPrior knowledge in elementary set theory, logics, linear algebra, data structures, abstract data types, algorithms, and probability theory (at the Bachelor's level) is required, as well as programming skills (we will use Python).
252-0820-00LInformation Technology in Practice
Previously called Case Studies from Practice
W5 KP2V + 1U + 1AM. Brandis
KurzbeschreibungThe course is designed to provide students with an understanding of "real-life" computer science challenges in business settings and teach them how to address these.
LernzielStudents will learn important considerations of companies when applying information technology in practice, including costs, economic value and risks of information technology use, or impact of information technology on business strategy and vice versa. They will get insight into how companies have used or are using information technology to be successful. Students will also learn how to assess information technology decisions from different viewpoints, including technical experts, IT managers, business users, and business top managers.

The course will equip participants to understand the role computer science and information technology plays in different companies and to contribute to respective decisions as they enter into practice.
InhaltThe course consists of multiple lectures on economics of information technology, business and IT strategy, and how they are interlinked, and a set of relevant case studies. They address how companies become more successful using information technology, how bad information technology decisions can hurt them, and they look into a number of current challenges companies face regarding their information technology.

The cases are taken both from documented international case studies as well as from Swiss companies participating in the course.

The learned concepts will be applied in exercises, which form a key component of the course.
Voraussetzungen / BesonderesThe course builds on the earlier "Case Studies from Practice" course, with a stronger focus on learning key concepts of information technology use in practice and applying them in exercises, and only a limited number of case studies.
The course prepares students for participation in the subsequent "Case Studies from Practice Seminar", which provides deeper insights into actual cases and how to solve them.
151-0116-10LHigh Performance Computing for Science and Engineering (HPCSE) for Engineers II Information W4 KP4GP. Koumoutsakos, S. M. Martin
KurzbeschreibungThis course focuses on programming methods and tools for parallel computing on multi and many-core architectures. Emphasis will be placed on practical and computational aspects of Uncertainty Quantification and Propagation including the implementation of relevant algorithms on HPC architectures.
LernzielThe course will teach
- programming models and tools for multi and many-core architectures
- fundamental concepts of Uncertainty Quantification and Propagation (UQ+P) for computational models of systems in Engineering and Life Sciences
InhaltHigh Performance Computing:
- Advanced topics in shared-memory programming
- Advanced topics in MPI
- GPU architectures and CUDA programming

Uncertainty Quantification:
- Uncertainty quantification under parametric and non-parametric modeling uncertainty
- Bayesian inference with model class assessment
- Markov Chain Monte Carlo simulation
Skripthttps://www.cse-lab.ethz.ch/teaching/hpcse-ii_fs21/
Class notes, handouts
Literatur- Class notes
- Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein
- CUDA by example, J. Sanders and E. Kandrot
- Data Analysis: A Bayesian Tutorial, D. Sivia and J. Skilling
- An introduction to Bayesian Analysis - Theory and Methods, J. Gosh, N. Delampady and S. Tapas
- Bayesian Data Analysis, A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari and D. Rubin
- Machine Learning: A Bayesian and Optimization Perspective, S. Theodorides
Voraussetzungen / BesonderesStudents must be familiar with the content of High Performance Computing for Science and Engineering I (151-0107-20L)
151-0306-00LVisualization, Simulation and Interaction - Virtual Reality I Information W4 KP4GA. Kunz
KurzbeschreibungTechnologie der virtuellen Realität. Menschliche Faktoren, Erzeugung virtueller Welten, Beleuchtungsmodelle, Display- und Beschallungssysteme, Tracking, haptische/taktile Interaktion, Motion Platforms, virtuelle Prototypen, Datenaustausch, VR-Komplettsysteme, Augmented Reality; Kollaborationssysteme; VR und Design; Umsetzung der VR in der Industrie; Human COmputer Interfaces (HCI).
LernzielDie Studierenden erhalten einen Überblick über die virtuelle Realität, sowohl aus technischer als auch aus informationstechnologischer Sicht. Sie lernen unterschiedliche Software- und Hardwareelemente kennen sowie deren Einsatzmöglichkeiten im Geschäftsprozess. Die Studierenden entwickeln eine Kenntnis darüber, wo sich heute die virtuelle Realität nutzbringend einsetzen lässt und wo noch weiterer Forschungsbedarf besteht. Anhand konkreter Programme und Systeme erfahren die Teilnehmer den Umgang mit den erlernten neuen Technologien.
Studierende sind in der Lage:
• gängige VR-Technologien zu evaluieren und die geeignetste für eine gegebene Aufgabe auszuwählen bezüglich der folgenden Gesichtspunkte:
o Visualisierungsmöglichkeiten: Monitore, Projektionssysteme, Datenbrillen
o Positionserfassungssystemen (optisch/elektromagnetisch/mechanisch)
o Interaktionstechnologien: Datenhandschuhe, Möglichkeit des echten Laufens/Erfassung der Augenbewegung/manuelle Interaktion, usw.
• eine VR-Anwendung selbstständig zu entwickeln,
• die VR-Technologie auf industrielle Anforderungen anzuwenden,
• das erlernte Wissen in einer praktischen Anwendung zu vertiefen.
• grundlegende Unterschiede in Anwendung digitaler Welten zu vergleichen (VR/AR/MR/XR)
InhaltDiese Vorlesung gibt eine Einführung in die Technologie der virtuellen Realität als neues Tool zur Bewältigung komplexer Geschäftsprozesse. Es sind die folgenden Themen vorgesehen: Einführung und Geschichte der VR; Eingliederung der VR in die Produktentwicklung; Nutzen von VR für die Industrie; menschliche Faktoren als Grundlage der virtuellen Realität; Einführung in die Erzeugung (Modellierung) virtueller Welten; Beleuchtungsmodelle; Kollisionserkennung; Displaysysteme; Projektionssysteme; Beschallungssysteme; Trackingssysteme; Interaktionsgeräte für die virtuelle Umgebung; haptische und taktile Interaktion; Motion Platforms; Datenhandschuh; physikalisch basierte Simulation; virtuelle Prototypen; Datenaustausch und Datenkommunikation; VR-Komplettsysteme; Augmented Reality; Kollaborationssysteme; VR zur Unterstützung von Designaufgaben; Umsetzung der VR in der Industrie; Ausblick in die laufende Forschung im Bereich VR.

Lehrmodule:
- Geschichte der VR und Definition der wichtigsten Begriffe
- Einordnung der VR in Geschäftsprozesse
- Die Erzeugung virtueller Welten
- Geräte und Technologien für die immersive virtuelle Realität
- Anwendungen der VR in unterschiedlichsten Gebieten
SkriptDie Durchführung der Lehrveranstaltung erfolgt gemischt mit Vorlesungs- und Übungsanteilen.
Die Vorlesung kann auf Wunsch in Englisch erfolgen. Das Skript ist ebenfalls in Englisch verfügbar.
Skript, Handout; Kosten SFr.30.-
Voraussetzungen / BesonderesVoraussetzungen:
keine
Vorlesung geeignet für D-MAVT, D-ITET, D-MTEC und D-INF

Testat/ Kredit-Bedingungen/ Prüfung:
– Teilnahme an Vorlesung und Kolloquien
– Erfolgreiche Durchführung von Übungen in Teams
– Mündliche Einzelprüfung 30 Minuten
401-0674-00LNumerical Methods for Partial Differential Equations
Nicht für Studierende BSc/MSc Mathematik
W10 KP2G + 2U + 2P + 4AR. Hiptmair
KurzbeschreibungDerivation, properties, and implementation of fundamental numerical methods for a few key partial differential equations: convection-diffusion, heat equation, wave equation, conservation laws. Implementation in C++ based on a finite element library.
LernzielMain skills to be acquired in this course:
* Ability to implement fundamental numerical methods for the solution of partial differential equations efficiently.
* Ability to modify and adapt numerical algorithms guided by awareness of their mathematical foundations.
* Ability to select and assess numerical methods in light of the predictions of theory
* Ability to identify features of a PDE (= partial differential equation) based model that are relevant for the selection and performance of a numerical algorithm.
* Ability to understand research publications on theoretical and practical aspects of numerical methods for partial differential equations.
* Skills in the efficient implementation of finite element methods on unstructured meshes.

This course is neither a course on the mathematical foundations and numerical analysis of methods nor an course that merely teaches recipes and how to apply software packages.
Inhalt1 Second-Order Scalar Elliptic Boundary Value Problems
1.2 Equilibrium Models: Examples
1.3 Sobolev spaces
1.4 Linear Variational Problems
1.5 Equilibrium Models: Boundary Value Problems
1.6 Diffusion Models (Stationary Heat Conduction)
1.7 Boundary Conditions
1.8 Second-Order Elliptic Variational Problems
1.9 Essential and Natural Boundary Conditions
2 Finite Element Methods (FEM)
2.2 Principles of Galerkin Discretization
2.3 Case Study: Linear FEM for Two-Point Boundary Value Problems
2.4 Case Study: Triangular Linear FEM in Two Dimensions
2.5 Building Blocks of General Finite Element Methods
2.6 Lagrangian Finite Element Methods
2.7 Implementation of Finite Element Methods
2.7.1 Mesh Generation and Mesh File Format
2.7.2 Mesh Information and Mesh Data Structures
2.7.2.1 L EHR FEM++ Mesh: Container Layer
2.7.2.2 L EHR FEM++ Mesh: Topology Layer
2.7.2.3 L EHR FEM++ Mesh: Geometry Layer
2.7.3 Vectors and Matrices
2.7.4 Assembly Algorithms
2.7.4.1 Assembly: Localization
2.7.4.2 Assembly: Index Mappings
2.7.4.3 Distribute Assembly Schemes
2.7.4.4 Assembly: Linear Algebra Perspective
2.7.5 Local Computations
2.7.5.1 Analytic Formulas for Entries of Element Matrices
2.7.5.2 Local Quadrature
2.7.6 Treatment of Essential Boundary Conditions
2.8 Parametric Finite Element Methods
3 FEM: Convergence and Accuracy
3.1 Abstract Galerkin Error Estimates
3.2 Empirical (Asymptotic) Convergence of Lagrangian FEM
3.3 A Priori (Asymptotic) Finite Element Error Estimates
3.4 Elliptic Regularity Theory
3.5 Variational Crimes
3.6 FEM: Duality Techniques for Error Estimation
3.7 Discrete Maximum Principle
3.8 Validation and Debugging of Finite Element Codes
4 Beyond FEM: Alternative Discretizations [dropped]
5 Non-Linear Elliptic Boundary Value Problems [dropped]
6 Second-Order Linear Evolution Problems
6.1 Time-Dependent Boundary Value Problems
6.2 Parabolic Initial-Boundary Value Problems
6.3 Linear Wave Equations
7 Convection-Diffusion Problems [dropped]
8 Numerical Methods for Conservation Laws
8.1 Conservation Laws: Examples
8.2 Scalar Conservation Laws in 1D
8.3 Conservative Finite Volume (FV) Discretization
8.4 Timestepping for Finite-Volume Methods
8.5 Higher-Order Conservative Finite-Volume Schemes
SkriptThe lecture will be taught in flipped classroom format:
- Video tutorials for all thematic units will be published online.
- Tablet notes accompanying the videos will be made available to the audience as PDF.
- A comprehensive lecture document will cover all aspects of the course.
LiteraturChapters of the following books provide supplementary reading
(detailed references in course material):

* D. Braess: Finite Elemente,
Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, Springer 2007 (available online).
* S. Brenner and R. Scott. Mathematical theory of finite element methods, Springer 2008 (available online).
* A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences. Springer, New York, 2004.
* Ch. Großmann and H.-G. Roos: Numerical Treatment of Partial Differential Equations, Springer 2007.
* W. Hackbusch. Elliptic Differential Equations. Theory and Numerical Treatment, volume 18 of Springer Series in Computational Mathematics. Springer, Berlin, 1992.
* P. Knabner and L. Angermann. Numerical Methods for Elliptic and Parabolic Partial Differential Equations, volume 44 of Texts in Applied Mathematics. Springer, Heidelberg, 2003.
* S. Larsson and V. Thomée. Partial Differential Equations with Numerical Methods, volume 45 of Texts in Applied Mathematics. Springer, Heidelberg, 2003.
* R. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, UK, 2002.

However, study of supplementary literature is not important for for following the course.
Voraussetzungen / BesonderesMastery of basic calculus and linear algebra is taken for granted.
Familiarity with fundamental numerical methods (solution methods for linear systems of equations, interpolation, approximation, numerical quadrature, numerical integration of ODEs) is essential.

Important: Coding skills and experience in C++ are essential.

Homework assignments involve substantial coding, partly based on a C++ finite element library. The written examination will be computer based and will comprise coding tasks.
  •  Seite  1  von  1