Search result: Catalogue data in Spring Semester 2021

Environmental Sciences Master Information
Major in Atmosphere and Climate
Climate Processes and Feedbacks
NumberTitleTypeECTSHoursLecturers
701-1216-00LNumerical Modelling of Weather and Climate Information W4 credits3GC. Schär, J. Vergara Temprado, M. Wild
AbstractThe course provides an introduction to weather and climate models. It discusses how these models are built addressing both the dynamical core and the physical parameterizations, and it provides an overview of how these models are used in numerical weather prediction and climate research. As a tutorial, students conduct a term project and build a simple atmospheric model using the language PYTHON.
ObjectiveAt the end of this course, students understand how weather and climate models are formulated from the governing physical principles, and how they are used for climate and weather prediction purposes.
ContentThe course provides an introduction into the following themes: numerical methods (finite differences and spectral methods); adiabatic formulation of atmospheric models (vertical coordinates, hydrostatic approximation); parameterization of physical processes (e.g. clouds, convection, boundary layer, radiation); atmospheric data assimilation and weather prediction; predictability (chaos-theory, ensemble methods); climate models (coupled atmospheric, oceanic and biogeochemical models); climate prediction. Hands-on experience with simple models will be acquired in the tutorials.
Lecture notesSlides and lecture notes will be made available at
Link
LiteratureList of literature will be provided.
Prerequisites / NoticePrerequisites: to follow this course, you need some basic background in atmospheric science, numerical methods (e.g., "Numerische Methoden in der Umweltphysik", 701-0461-00L) as well as experience in programming. Previous experience with PYTHON is useful but not required.
701-1228-00LCloud Dynamics: Hurricanes Information W4 credits3GU. Lohmann
AbstractHurricanes are among the most destructive elements in the atmosphere. This lecture will discuss the physical requirements for their formation, life cycle, damage potential and their relationship to global warming. It also distinguishes hurricanes from thunderstorms and tornadoes.
ObjectiveAt the end of this course students will be able to distinguish the formation and life cycle mechanisms of tropical cyclones from those of extratropical thunderstorms/cyclones, project how tropical cyclones change in a warmer climate based on their physics and evaluate different tropical cyclone modification ideas.
Contentsee course outline at: Link
Lecture notesSlides will be made available
LiteratureA literature list can be found here: Link
Prerequisites / NoticeAt least one introductory lecture in Atmospheric Science or Instructor's consent. This lecture will build on some concepts of atmospheric dynamics and their governing equations. Thus, mathematical knowledge will be needed to use the equations to understand the material of the course.
701-1232-00LRadiation and Climate ChangeW3 credits2GM. Wild
AbstractThis lecture focuses on the prominent role of radiation in the energy balance of the Earth and in the context of past and future climate change.
ObjectiveThe aim of this course is to develop a thorough understanding of the fundamental role of radiation in the context of Earth's energy balance and climate change.
ContentThe course will cover the following topics:
Basic radiation laws; sun-earth relations; the sun as driver of climate change (faint sun paradox, Milankovic ice age theory, solar cycles); radiative forcings in the atmosphere: aerosol, water vapour, clouds; radiation balance of the Earth (satellite and surface observations, modeling approaches); anthropogenic perturbation of the Earth radiation balance: greenhouse gases and enhanced greenhouse effect, air pollution and global dimming; radiation-induced feedbacks in the climate system (water vapour feedback, snow albedo feedback); climate model scenarios under various radiative forcings.
Lecture notesSlides will be made available
LiteratureAs announced in the course
701-1252-00LClimate Change Uncertainty and Risk: From Probabilistic Forecasts to Economics of Climate Adaptation Restricted registration - show details
Number of participants limited to 50.

Waiting list until 05.03.2021.
W3 credits2V + 1UD. N. Bresch, R. Knutti
AbstractThe course introduces the concepts of predictability, probability, uncertainty and probabilistic risk modelling and their application to climate modeling and the economics of climate adaptation.
ObjectiveStudents will acquire knowledge in uncertainty and risk quantification (probabilistic modelling) and an understanding of the economics of climate adaptation. They will become able to construct their own uncertainty and risk assessment models (in Python), hence basic understanding of scientific programming forms a prerequisite of the course.
ContentThe first part of the course covers methods to quantify uncertainty in detecting and attributing human influence on climate change and to generate probabilistic climate change projections on global to regional scales. Model evaluation, calibration and structural error are discussed. In the second part, quantification of risks associated with local climate impacts and the economics of different baskets of climate adaptation options are assessed – leading to informed decisions to optimally allocate resources. Such pre-emptive risk management allows evaluating a mix of prevention, preparation, response, recovery, and (financial) risk transfer actions, resulting in an optimal balance of public and private contributions to risk management, aiming at a more resilient society.
The course provides an introduction to the following themes:
1) basics of probabilistic modelling and quantification of uncertainty from global climate change to local impacts of extreme events
2) methods to optimize and constrain model parameters using observations
3) risk management from identification (perception) and understanding (assessment, modelling) to actions (prevention, preparation, response, recovery, risk transfer)
4) basics of economic evaluation, economic decision making in the presence of climate risks and pre-emptive risk management to optimally allocate resources
Lecture notesPowerpoint slides will be made available.
LiteratureMany papers for in-depth study will be referred to during the lecture.
Prerequisites / NoticeHands-on experience with probabilistic climate models and risk models will be acquired in the tutorials; hence good understanding of scientific programming forms a prerequisite of the course, in Python (teaching language, object oriented) or similar. Basic understanding of the climate system, e.g. as covered in the course 'Klimasysteme' is required, as well as beginner level in statistical and time series analysis.

Examination: graded tutorials during the semester (benotete Semesterleistung)
  •  Page  1  of  1