Search result: Catalogue data in Spring Semester 2021

Civil Engineering Master Information
Master Studies (Programme Regulations 2020)
Major Courses
Major in Materials and Mechanics
NumberTitleTypeECTSHoursLecturers
101-0658-00LConcrete Material ScienceW4 credits2GR. J. Flatt, T. Wangler
AbstractConcrete Material Science examines how concrete properties are affected by its microstructure and how its microstructure is controlled by processing and composition. To achieve this, the course comprises a comprehensive presentation of the different techniques used to characterize concrete and its constituents, both in research and construction practice.
ObjectiveIn this course you will gain a thorough understanding of common techniques for characterizing engineering, microstructural, physical and chemical properties of concrete. You will learn how this knowledge can be used both in research and industrial environments. In practice, these techniques are used, for example, to evaluate new materials, diagnose causes of problems, determine responsibilities, handle reclaims or quality insurance as well as devise an experimental program in research and development. Throughout the course various references you will also learn about how concrete can be designed to have a reduced environmental impact and increased service life.
ContentProgram:
1. Introduction to Concrete Material Science
2. Thermodynamic modeling of cement hydration and its industrial relevance. Dr. Thomas Matschei (Holcim Group Support)
3. Characterization techniques of cementitious materials I
4. Characterization techniques of cementitious materials II
5. Characterization techniques of cementitious materials III: Solid State NMR. Prof. Jean-Baptiste d'Espinose (ESPCI)
6. Fresh properties of concrete - Rheology
7. Chemical admixtures
8. Transport in porous media
9. Durability I
10. Alternative binders
11. Durability II - Alkali-Silica Reaction. Dr. Andreas Lehmann (EMPA)
12. Practical exercises I
13. Practical exercises II
14. Practical exercises III
Lecture notesStudents will receive all obligatory literature in printed form.
LiteratureStudents will recieve all obligatory literature in printed form.
Prerequisites / NoticeStudents with Bachelor Degree
Further degrees: Dipl. Ing. ETH or FH
101-0678-00LWood Physics & Wood MaterialsW3 credits2GI. Burgert, T. Zimmermann
AbstractFundamental relationships between structure and properties of wood and wood based materials are conveyed. Based on the hierarchical structure of wood, aspects of nanostructural characterization and micromechanical analysis will be covered. In view of material developments, concepts for the assembly of advanced wood materials and cellulose-based materials will be demonstrated.
ObjectiveAt a global scale wood is one of the most important building materials. Knowledge of significant physical properties of wood, wood based materials and advanced wood materials as well as the relationship between structure and properties are conveyed. This knowledge is fundamental for an appropriate use of wood and wood based materials as well as for a further improvement of the reliability of wood and for establishing new fields of application.
ContentThe following topics are covered:
Hierarchical structure of wood and assembly of wood-based products
Physical properties (density, wood moisture, swelling and shrinkage)
Mechanical properties at different length scales
Nanostructural characterization
Materials from nanocellulose
Wood modification and durability
Wood polymer composites
Wood hybrid materials
Wood surfaces
Functional wood materials
Lecture notesHandouts will be sent to the students by e-mail prior to each lecture.
LiteratureNiemz, P.: Physik des Holzes und der Holzwerkstoffe, DRW Verlag 1993
Bodig, J.; Jayne, B.A.: Mechanics of wod and wood composites. Krieger, Malabar, Florida 1993
Dunky,M.; Niemz, P.: Holzwerkstoffe und Leime. Springer, Berlin 2002
Wagenführ,A.; Scholz,F.:Taschenbuch der Holztechnik (Kapitel 1.4 und 2, P.Niemz), Hanser Verlag 2008
101-0679-00LNon-Destructive Test Methods and Health Monitoring Restricted registration - show details
Number of participants limited to 8.
W3 credits2PI. Burgert, U. Angst
AbstractMethods for the non-destructive characterization and testing of wood and reinforced concrete are presented in introductory lectures. Afterwards selected experiments such as measurement of humidity, ultrasound, hardness and porosity are performed by the students. Some parameters that influence materials properties are tested. A written report with results and discussion has to be prepared at the en
ObjectiveImportant non-destructive test methods shall be learnt. These methods that are based on the same physical principles (e.g. resistance measurement, ultrasound, hardness) are used for wood and concrete in a comparative way. The course shall the address the fundamentals for condition assessment of structures in wood and reinforced concrete.
ContentDetailed knowledge of the microscopic structure of concrete and wood.
Knowledge of non-destructive test methods for concrete and wood (humidity, ultrasound, hardness, etc.).
Problems in calibration of measuring instruments, influence of disturbing parameters (e.g. temperature).
Basics of condition assessment of wood and reinforced concrete structures, assessment of deterioration processes (corrosion).
Writing of reports for condition assessment.
Possibilities of restoration of structures.
Lecture notesA manuscript of the course will be available. Additionally reprints or more specific literature will be indicated.
LiteratureWerkstoff Holz:
Niemz, P.; Sander, D.: Prozessmesstechnik in der Holzindustrie. Leipzig 1990
Tagungsbände Fachtagungen zur zerstörungsfreien Werkstoffprüfung
Bucur, V.: Characterization and Imaging of Wood. Springer 2003
Bucur, V.: Acoustics of Wood. Springer 2006
Vollenschar (Hrsg): Wendehorst Baustoffkunde. 26. Auflage. Teubner 2004
Hasenstab, A.: Integritätsprüfung mit zerstörungsfreien Ultraschallechoverfahren.
Diss. TU Berlin 2005
Unger, A.: Schniewind, A.P.; Unger, W.: Conservation of wood artifacts.
Springer 2001

Werkstoff Beton
D. Bürcheler: Der elektrische Widerstand von zementösen Werkstoffen. Diss. ETHZ 11876 (1996)
327-2224-00LMaP Distinguished Lecture Series on Additive Manufacturing
Does not take place this semester.
This course is primarily designed for MSc and doctoral students. Guests are welcome.
W1 credit2Sfurther lecturers
AbstractThis course is an interdisciplinary colloquium on Additive Manufacturing (AM) involving different internationally renowned speakers from academia and industry giving lectures about their cutting-edge research, which highlights the state-of-the-art and frontiers in the AM field.
ObjectiveParticipants become acquainted with the state-of-the-art and frontiers in Additive Manufacturing, which is a topic of global and future relevance from the field of materials and process engineering. The self-study of relevant literature and active participation in discussions following presentations by internationally renowned speaker stimulate critical thinking and allow participants to deliberately discuss challenges and opportunities with leading academics and industrial experts and to exchange ideas within an interdisciplinary community.
ContentThis course is a colloquium involving a selected mix of internationally renowned speaker from academia and industry who present their cutting-edge research in the field of Additive Manufacturing. The self-study of relevant pre-read literature provided in advance to each lecture serves as a basis for active participation in the critical discussions following each presentation.
Lecture notesSelected scientific pre-read literature (max. three articles per lecture) relevant for and discussed at the end of each individual lecture is posted in advance on the course web page
Prerequisites / NoticeParticipants should have a solid background in materials science and/or engineering.
101-0158-01LMethod of Finite Elements IW4 credits2GE. Chatzi, P. Steffen
AbstractThe course introduces students to the fundamental concepts of the Method of Finite Elements, including element formulations, numerical solution procedures and modelling details. We aim to equip students with the ability to code algorithms (based on Python) for the solution of practical problems of structural analysis.
DISCLAIMER: the course is not an introduction to commercial software.
ObjectiveThe Direct Stiffness Method is revisited and the basic principles of Matrix Structural Analysis are overviewed.
The basic theoretical concepts of the Method of Finite Elements are imparted and perspectives for problem solving procedures are provided.
Linear finite element models for truss and continuum elements are introduced and their application for structural elements is demonstrated.
The Method of Finite Elements is implemented on practical problems through accompanying demonstrations and assignments.
Content1) Introductory Concepts
Matrices and linear algebra - short review.

2) The Direct Stiffness Method
Demos and exercises in MATLAB or Python

3) Formulation of the Method of Finite Elements.
- The Principle of Virtual Work
- Isoparametric formulations
- 1D Elements (truss, beam)
- 2D Elements (plane stress/strain)
Demos and exercises in MATLAB or Python

4) Practical application of the Method of Finite Elements.
- Practical Considerations
- Results Interpretation
- Exercises, where structural case studies are modelled and analyzed
Lecture notesThe lecture notes are in the form of slides, available online from the course webpage:
Link
LiteratureStructural Analysis with the Finite Element Method: Linear Statics, Vol. 1 & Vol. 2 by Eugenio Onate (available online via the ETH Library)

Supplemental Reading
Bathe, K.J., Finite Element Procedures, Prentice Hall, 1996.
Prerequisites / NoticePrior basic knowledge of Python is necessary.
101-0691-00LTowards Efficient and High-Performance Computing for Engineers Restricted registration - show details W4 credits2GD. Kammer
AbstractThis course is an introduction to various programming techniques and tools for the development of scientific simulations (using C++). It provides the practical and theoretical basis for high-performance computing (HPC) including data structure, testing, performance evaluation and parallelization. The course bridges the gap between introductory and advanced programming courses.
ObjectiveThis course provides an overview of programming techniques relevant for efficient and high-performance computing. It builds on introductory coding experience (e.g. matlab/python/java) and introduces the students to more advanced tools, specifically C++, external libraries, and supercomputers. The objective of this course is to introduce various approaches of good practice in developing your own code (for your research or engineering project) or using/modifying existing open-source programs. The course targets engineering students and seeks to provide a practical introduction towards performance-based computational simulation.
Content1. code versioning and DevOps lifecycle
2. introduction to C++
3. structured programming
4. object-oriented programming
5. code testing
6. code performance (design, data structure, evaluating, using external libraries)
7. code parallelization
8. running simulations on supercomputers
Lecture notesWill be provided during the lecture via moodle.
LiteratureWill be provided during the lecture.
Prerequisites / NoticeA good knowledge of MATLAB (or Python or java) is necessary for attending this course.
  •  Page  1  of  1