Suchergebnis: Katalogdaten im Frühjahrssemester 2016

Atmospheric and Climate Science Master Information
Wahlfächer
Den Studierenden steht das gesamte Lehrangebot der ETHZ und der Universitäten Zürich und Bern zur individuellen Auswahl offen.
Atmosphärische Zusammensetzung und Kreisläufe
NummerTitelTypECTSUmfangDozierende
651-4004-00LOrganic Geochemistry and the Global Carbon CycleW3 KP2GT. I. Eglinton, M. Lupker
KurzbeschreibungThe carbon cycle connects different reservoirs of C, including life on Earth, atmospheric CO2, and economically important geological reserves of C. Much of this C is in reduced (organic) form, and is composed of complex chemical structures that reflect diverse biological activity, processes and transformations.
LernzielA wealth of information is held within the complex organic molecules, both in the context of the contemporary carbon cycle and its links to is other biogeochemical cycles, as well as in relation to Earth's history, the evolution of life and climate on this planet.

In this course we will learn about the role of reduced forms of carbon in the global cycle, how these forms of carbon are produced, move around the planet, and become sequestered in the geological record, and how they can be used to infer biological activity and conditions on this planet in the geologic past. The course encompasses a range of spatial and temporal scales, from molecular to global, and from the contemporary environment to earliest life.
Voraussetzungen / BesonderesThis course and the lecture course "651-4044-00L Geomicrobiology and Biogeochemistry" Link are good preparations for the combined Field-Lab Course ("651-4044-02 P Geomicrobiology and Biogeochemistry Field Course" and "651-4044-01 P Geomicrobiology and Biogeochemistry Lab Practical"). Details under Link
701-1240-00LModelling Environmental PollutantsW3 KP2GC. Bogdal, M. Scheringer
KurzbeschreibungModeling the emissions, transport, partitioning and transformation/degradation of chemical contaminants in air, water and soil.
LernzielThis course is intended for students who are interested in the environmental fate and transport of volatile and semi-volatile organic chemicals and exposure to pollutants in environmental media including air, water, soil and biota. The course focuses on the theory and application of mass-balance models of environmental pollutants. These models are quantitative tools for describing, understanding, and predicting the way pollutants interact with the environment. Important topics include thermodynamic and kinetic descriptions of chemical behavior in environmental systems; mechanisms of chemical degradation in air and other media; novel approaches to modeling chemical fate in a variety of environments, including lakes and rivers, generic regions, and at the global scale, and application of mass balance modeling principles to describe bioaccumulation of pollutants by fish and mammals.
InhaltApplication of mass balance principles to chemicals in a system of coupled environmental media. Measurement and estimation of physico-chemical properties that determine the environmental behavior of chemicals. Thermodynamic and kinetic controls on the behavior of pollutants. Modeling environmental persistence, bioaccumulation and long-range transport potential of chemicals, including a review of available empirical data on various degradation processes. Current issues in multimedia contaminant fate modeling and a case study of the student's choice.
SkriptMaterial to support the lectures will be distributed during the course.
LiteraturThere is no required text. The following texts are useful for background reading and additional information.
D. Mackay. Multimedia Environmental Models: The Fugacity Approach, 2nd Ed. 2001. CRC Press.
R. P. Schwarzenbach, P. M. Gschwend, D. M. Imboden. Environmental Organic Chemistry. 2nd Ed. 2003, John Wiley & Sons.
M. Scheringer. Persistence and spatial range of environmental chemicals: New ethical and scientific concepts for risk assessment. 2002. Wiley-VCH.
701-1317-00LGlobal Biogeochemical Cycles and Climate Information W3 KP3GN. Gruber, M. Vogt
KurzbeschreibungThe human-induced emissions of carbon dioxide has led to atmospheric CO2 concentrations that Earth likely has no’t seen for the last 30 million years. This course aims to investigate and understand the impact of humans on Earth's biogeochemical cycles with a focus on the carbon cycle and its interaction with the physical climate system for the past, the present, and the future.
LernzielThis course aims to investigate the nature of the interaction between biogeochemical cycles on land and in the ocean with climate and how this interaction has evolved over time and will change in the future. Students are expected to participate actively in the course, which includes the critical reading of the pertinent literature and class presentations.
InhaltTopics discussed include: The anthropogenic perturbation of the global carbon cycle and climate. Response of land and oceanic ecosystems to past and future global changes; Interactions between biogeochemical cycles on land and in the ocean; Biogeochemical processes controlling carbon dioxide and oxygen in the ocean and atmosphere on time-scales from a few years to a few hundred thousand years.
SkriptSarmiento & Gruber (2006), Ocean Biogeochemical Dynamics, Princeton University Press. Additional handouts will be provided as needed. see website: Link
LiteraturSarmiento & Gruber (2006), Ocean Biogeochemical Dynamics, Princeton University Press, 526pp.

MacKenzie, F. T. (1999), Global biogeochemical cycles and the physical climate system, Global Change Instruction Program, UCAR, Boulder, CO, 69pp.

W. H. Schlesinger (1997), Biogeochemistry: An Analysis of Global Change, Academic Press.

Original literature.
Klimageschichte und Paläoklimatologie
NummerTitelTypECTSUmfangDozierende
651-3424-00LSedimentologieW3 KP2GA. Gilli
KurzbeschreibungVermittlung der Grundlagen der Sedimentologie:
Prozess - Produkt - Diagenese - Gesteinslektüre

-Ueberblick über die Oberflächen-Sedimentationsprozesse.
-Einführung in wichtige physikalische, chemische und biologische Aspekte der Sedimentation
-Einführung in die Diagenese
-Einführung in die Sedimentgesteinslektüre:
physikalische, biologische und chemische Sedimentsignaturen
LernzielDie Studierenden kennen die wichtigesten klastischen, biogenen und chemischen Sedimente und Sedimentgesteine. Sie kennen die physikalischen, chemischen und biologischen Prozesse, die bei der Bildung von Sedimenten von Bedeutung sind.
Die Studierenden kennen die Grundlagen der Faziesanalyse in der Sedimentologie und sie haben die Voraussetzungen zur Feldanalyse von Sedimentgesteinen.
InhaltTeil I Marine and lakustrische Sedimente:
-pelagische Sedimente
-hemipelagische Sedimente
-kieslige Sedimente
-Flachwasserkarbonate: Fazies, Diagenese
-lakustische Sedimente
-Evaporite

Teil II klastische Sedimente
- Sediment Transport, Strukturen und Schichtformen
- Terrestrische, flachmarine und tiefmarine Ablagerungsbereiche, Prozesse und Ablagerungsstrukturen
- Diagenese von Sandstein
- Tongesteine
SkriptSedimentologie-Skript
Voraussetzungen / BesonderesVorlesung "Dynamische Erde" oder vergleichbare Einführungsvorlesung
701-1317-00LGlobal Biogeochemical Cycles and Climate Information W3 KP3GN. Gruber, M. Vogt
KurzbeschreibungThe human-induced emissions of carbon dioxide has led to atmospheric CO2 concentrations that Earth likely has no’t seen for the last 30 million years. This course aims to investigate and understand the impact of humans on Earth's biogeochemical cycles with a focus on the carbon cycle and its interaction with the physical climate system for the past, the present, and the future.
LernzielThis course aims to investigate the nature of the interaction between biogeochemical cycles on land and in the ocean with climate and how this interaction has evolved over time and will change in the future. Students are expected to participate actively in the course, which includes the critical reading of the pertinent literature and class presentations.
InhaltTopics discussed include: The anthropogenic perturbation of the global carbon cycle and climate. Response of land and oceanic ecosystems to past and future global changes; Interactions between biogeochemical cycles on land and in the ocean; Biogeochemical processes controlling carbon dioxide and oxygen in the ocean and atmosphere on time-scales from a few years to a few hundred thousand years.
SkriptSarmiento & Gruber (2006), Ocean Biogeochemical Dynamics, Princeton University Press. Additional handouts will be provided as needed. see website: Link
LiteraturSarmiento & Gruber (2006), Ocean Biogeochemical Dynamics, Princeton University Press, 526pp.

MacKenzie, F. T. (1999), Global biogeochemical cycles and the physical climate system, Global Change Instruction Program, UCAR, Boulder, CO, 69pp.

W. H. Schlesinger (1997), Biogeochemistry: An Analysis of Global Change, Academic Press.

Original literature.
Hydrologie und Wasserkreislauf
NummerTitelTypECTSUmfangDozierende
102-0468-00LWatershed Modelling Information W3 KP2GP. Molnar
KurzbeschreibungIntroduction to watershed modelling with applications of GIS in hydrology, the use of semi- and fully-distributed continuous watershed models, and their calibration and validation. The course contains substantive practical modelling experience in several assignments.
LernzielWatershed Modelling is a course in the Master of Science in Environmental Engineering Programme. It is a practical course in which the students learn to (a) use GIS in hydrological applications, (b) calibrate and validate models, (c) apply and interpret semi- and fully- distributed continuous watershed models, and (d) discuss several modelling case studies. This course is a follow up of Hydrology 2 and requires solid computer skills.
Inhalt- Introduction to watershed modelling
- GIS in watershed modelling (ArcGIS exercise)
- Calibration and validation of models
- Semi-distributed modelling with PRMS (model description, application)
- Distributed watershed modelling with TOPKAPI (model description, application)
- Modelling applications and case studies (climate change scenarios, land use change, basin erosion)
Literatur- Lecture presentations
- Exercise documentation
- Relevant scientific papers
all posted on the course website
701-1216-00LNumerical Modelling of Weather and Climate Information W4 KP3GC. Schär, U. Lohmann
KurzbeschreibungThe guiding principle of this lecture is that students can understand how weather and climate models are formulated from the governing physical principles and how they are used for climate and weather prediction purposes.
LernzielThe guiding principle of this lecture is that students can understand how weather and climate models are formulated from the governing physical principles and how they are used for climate and weather prediction purposes.
InhaltThe course provides an introduction into the following themes: numerical methods (finite differences and spectral methods); adiabatic formulation of atmospheric models (vertical coordinates, hydrostatic approximation); parameterization of physical processes (e.g. clouds, convection, boundary layer, radiation); atmospheric data assimilation and weather prediction; predictability (chaos-theory, ensemble methods); climate models (coupled atmospheric, oceanic and biogeochemical models); climate prediction.

Hands-on experience with simple models will be acquired in the tutorials.
SkriptSlides and lecture notes will be made available at
Link
LiteraturList of literature will be provided.
Voraussetzungen / BesonderesPrerequisites: to follow this course, you need some basic background in numerical methods (e.g., "Numerische Methoden in der Umweltphysik", 701-0461-00L)
102-0448-00LGroundwater IIW6 KP4GM. Willmann
KurzbeschreibungThe course is based on the course 'Groundwater I' and is a prerequisite for further applications of groundwater flow and contaminant transport models.
LernzielThe course should enable students to understand and apply methods and tools for groundwater flow and transport modelling.

the student should be able to
a) formulate practical flow and contaminant transport problems.

b) solve steady-state and transient flow and transport problems in 2 and 3 spatial dimensions using numerical codes based on the finite difference method and the finite element methods.

c) solve simple inverse flow problems for parameter estimation given measurements.

d) assess simple multiphase flow problems.

e) assess spatial variability of parameters and use of stochastic techniques in this task.

f) solve simple flow problems affected by fluid density.

g) assess simple coupled reactive transport problems.
InhaltIntroduction and basic flow and contaminant transport equation.

Numerical solution of the 3D flow equation using the finite difference method.

Numerical solution to the flow equation using the finite element equation

Numerical solution to the transport equation using the finite difference method.

Numerical solution to the transport equation using the method of characteristics and the random walk method.

Numerical solution to the transport equation: Case studies.

Two-phase flow and Unsaturated flow problems.

Modelling of flow problems affected by fluid density.

Spatial variability of parameters and its geostatistical representation.

Geostatistics and stochastic modelling.

Reactive transport modelling.
SkriptHandouts
Literatur- J. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979
- P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology, J. Wilson & Sons, New York, 1990

- Chiang und Kinzelbach, 3-D Groundwater Modeling with PMWIN. Springer, 2001.

- G. de Marsily, Quantitative Hydrogeology, Academic Press, 1986

- W. Kinzelbach und R. Rausch: Grundwassermodellierung, Eine Einführung mit Uebungen Gebrüder Bornträger, Berlin, 1995, ISBN 3-443-01032-6

- F. Stauffer: Strömungsprozesse im Grundwasser, Konzepte und Modelle vdf, 1998, ISBN 3-7281-2641-1
Voraussetzungen / BesonderesThe exercises of the course are organized as a computer lab (one lesson per week). The computer lab will provide hands-on experience with groundwater modelling.
102-0488-00LWater Resources ManagementW3 KP2GD. Anghileri
KurzbeschreibungModern engineering approach to problems of sustainable water resources, planning and management of water allocation requires the understanding of modelling techniques that allow to account for comprehensive water uses (thereby including ecological needs) and stakeholders needs, long-term analysis and optimization. The course presents the most relevant approaches to address these problems.
LernzielThe course provides the essential knowledge and tools of water resources planning and management. Core of the course are the concepts of data analysis, simulation, optimization and reliability assessment in relation to water projects and sustainable water resources management.
InhaltThe course is organized in four parts.
Part 1 is a general introduction to the purposes and aims of sustainable water resources management, problem understanding and tools identification.
Part 2 recalls Time Series Analysis and Linear Stochastic Models. An introduction to Nonlinear Time Series Analysis and related techniques will then be made in order to broaden the vision of how determinism and stochasticity might sign hydrological and geophysical variables.
Part 3 deals with the optimal allocation of water resources and introduces to several tools traditionally used in WRM, such as linear and dynamic programming. Special attention will be devoted to optimization (deterministic and stochastic) and compared to simulation techniques as design methods for allocation of water resources in complex and competitive systems, with focus on sustainability and stakeholders needs.
Part 4 will introduce to basic indexes used in economical and reliability analyses, and will focus on multicriteria analysis methods as a tool to assess the reliability of water systems in relation to design alternatives.
SkriptA copy of the lecture handouts will be available on the webpage of the course. Complementary documentation in the form of scientific and technical articles, as well as excerpts from books will be also made available.
LiteraturA number of book chapters and paper articles will be listed and suggested to read. They will also be part of discussion during the oral examination.
Voraussetzungen / BesonderesSuggested relevant courses: Hydrologie I (or a similar content course) and Wasserhaushalt (Teil "Wasserwirtschaft", 4. Sem. UmweltIng., or a similar content course) for those students not belonging to Environmental Engineering.
Voraussetzungen
Die Formulierung der Voraussetzungen sind Teil der Zulassung zum Masterstudium. Sie werden durch die Zulassungsstelle informiert, welche Kurse aus dem Bereich «Voraussetzungen» Sie nacharbeiten müssen. Diese Kurse sind als Wahlfächer dem Masterstudium anrechenbar.
NummerTitelTypECTSUmfangDozierende
701-0412-00LKlimasystemeW3 KP2GR. Knutti
KurzbeschreibungDie wichtigsten physikalischen Komponenten des Klimasystems und deren Wechselwirkungen werden eingeführt. Vor dem Hintergrund der Klimageschichte - und variabilität werden die Mechanismen des anthropogenen Klimawandels analysiert. Absolvierende des Kurses sind in der Lage, einfache Problemstellungen aus dem Bereich der Klimasysteme zu identifizieren und erläutern.
LernzielStudierende können:
- die wichtigsten physikalischen Komponenten des goblaben Klimasystems beschreiben und ihre Wechselwirkungen skizzieren.
- die Mechanismen des anthropogenen Klimawandels erklären.
einfache Problemstellungen aus dem Bereich der Klimasysteme identifizieren und erläutern.
SkriptKopien der Folien werden elektronisch zur Verfuegung gestellt.
LiteraturEine vollständige Literaturliste wird abgegeben. Insbesondere empfohlen sind:
- Hartmann, D., 1994: Global Physical Climatology. Academic Press, London, 411 pp.
- Peixoto, J.P. and A.H. Oort, 1992: Physics of Climate. American Institute of Physics, New York, 520 pp.
Voraussetzungen / BesonderesDozierende: Reto Knutti, mehrere Vorträge zu Spezialthemen von anderen Dozenten
Unterrichtssprache: deutsch
Sprache der Folien: englisch
Übrige Wahlfächer ETH
» Gesamtes Lehrangebot der ETH Zürich
Ergänzungen
Ergänzung in Physikalische Glaziologie
NummerTitelTypECTSUmfangDozierende
651-1504-00LSnowcover: Physics and ModellingW4 KP3GM. Schneebeli, H. Löwe
KurzbeschreibungSnow is a fascinating high-temperature material and relevant for applications in glaciology, hydrology, atmospheric sciences, polar climatology, remote sensing and natural hazards. This course introduces key concepts and underlying physical principles of snow, ranging from individual crystals to polar ice sheets.
LernzielThe course aims at a cross-disciplinary overview about the phenomenology of relevant processes in the snow cover, traditional and advanced experimental methods for snow measurements and theoretical foundations with key equations required for snow modeling. Tutorials and short presentations will also consider the bigger picture of snow physics with respect to climatology, hydrology and earth science.
InhaltThe lectures will treat snow formation, crystal growth, snow microstructure, metamorphism, ice physics, snow mechanics, heat and mass transport in the snowcover, surface energy balance, snow models, wind transport, snow chemistry, electromagnetic properties, experimental techniques.

The tutorials include a demonstration/exercise part and a presentation part. The demonstration/exercise part consolidates key subjects of the lecture by means of small data sets, mathematical toy models, order of magnitude estimates, image analysis and visualization, small simulation examples, etc. The presentation part comprises short presentations (about 15 min) based on selected papers in the subject.

A short presentation by the student in one of the tutorials is a pre-requisite to pass the course. Topics for the presentations will be offered in the first week of the semester. A good performance in the presentations will be counted as a bonus on the grade for the written exam.

First practical experience with modern methods measuring snow properties can be acquired in a voluntary field excursion.
SkriptLecture notes and selected publications.
Voraussetzungen / BesonderesWe offer a voluntary field excursion to Davos on Saturday, April 2, 2016, in Davos. We will demonstrate traditional and modern field-techniques (snow profile, Near-infrared photography, SnowMicroPen) and you will have the chance to use the instruments yourself. The excursion includes a visit of the SLF cold laboratories with the micro-tomography setup and the snowmaker.
101-0288-00LSnow and Avalanches: Processes and Risk ManagementW3 KP2GJ. Schweizer, S. L. Margreth
KurzbeschreibungDie Vorlesung behandelt Schnee- und Lawinenprozesse innerhalb eines Einzugsgebietes vom Anrissgebiet über die Sturzbahn zum Auslaufgebiet mit Blick auf das Risikomanagement von Naturgefahren.
Lernziel- Grundlagen der Schnee- und Lawinenmechanik vermitteln
- Methoden zur Modellierung von Schnee- und Lawinenprozessen aufzeigen
- Wechselwirkung von Schnee- und Lawinen mit Objekten (Gebäude, Masten, Kunstbauten) und Natur (insb. Wald) darstellen
- Methoden der kurz- und langfristigen Gefahrenanalyse erklären
- Mögliche Schutzmassnahmen im Rahmen eines integralen Risikomanagements vorstellen
- Grundlagen über Planung, Bemessung und Wirkung der verschiedenen kurz- und langfristigen Massnahmen vermitteln
InhaltÜbersicht über Schnee- und Lawinenprozesse im Einzugsgebiet; Schneeniederschlag, Schneelasten, Extremwertstatistik; Schneeeigenschaften; Schneedecke; Interaktion Schneedecke-Atmosphäre; Lawinenbildung; Gefahrenbeurteilung, Lawinenprognose; Lawinendynamik; Interaktion mit Objekten; Gefahrenzonierung; Schutzmassnahmen; Integrales Risikomanagement.
LiteraturArmstrong, R.L. and Brun, E. (Editors), 2008. Snow and Climate - Physical processes, surface energy exchange and modeling. Cambridge University Press, Cambridge, U.K., 222 pp.

BUWAL/SLF, 1984. Richtlinien zur Berücksichtigung der Lawinengefahr bei raumwirksamen Tätigkeiten. EDMZ, Bern.

Egli, T., 2005. Wegleitung Objektschutz gegen gravitative Naturgefahren, Vereinigung Kantonaler Feuerversicherungen (Hrsg.), Bern.

Fierz, C., Armstrong, R.L., Durand , Y., Etchevers, P., Greene, E., McClung, D.M., Nishimura, K., Satyawali, P.K. and Sokratov, S.A., 2009. The International Classification for Seasonal Snow on the Ground. HP-VII Technical Documents in Hydrology, 83. UNESCO-IHP, Paris, France, 90 pp.

Furukawa, Y. and Wettlaufer, J.S., 2007. Snow and ice crystals. Physics Today, 60(12): 70-71.

Margreth, S., 2007. Technische Richtlinie für den Lawinenverbau im Anbruchgebiet. Bundesamt für Umwelt, Bern, WSL Eidg. Institut für Schnee- und Lawinenforschung Davos. 134 S.

McClung. D.M. and Schaerer, P. 2006. The Avalanche Handbook, 3rd ed., The Mountaineers, Seattle.

Mears, A.I., 1992. Snow-avalanche hazard analysis for land-use planning and engineering. 49, Colorado Geological Survey.

Schweizer, J., Bartelt, P. and van Herwijnen, A., 2015. Snow avalanches. In: W. Haeberli and C. Whiteman (Editors), Snow and Ice-Related Hazards, Risks and Disasters. Hazards and Disaster Series. Elsevier, pp. 395-436.

Schweizer, J., Jamieson, J.B. and Schneebeli, M., 2003. Snow avalanche formation. Reviews of Geophysics, 41(4): 1016, doi:10.1029/2002RG000123.

Shapiro, L.H., Johnson, J.B., Sturm, M. and Blaisdell, G.L., 1997. Snow mechanics - Review of the state of knowledge and applications. Report 97-3, US Army CRREL, Hanover, NH, U.S.A.
Voraussetzungen / BesonderesGanztägige Exkursion (nicht obligatorsich) nach Davos zur Vertiefung ausgewählter Themen mit Einblick in die Tätigkeit des WSL-Instituts für Schnee- und Lawinenforschung SLF (Anfang März 2016)
651-4090-00LQuantification and Modeling of the Cryosphere: Spatial and Thermal Processes (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: GEO814

Beachten Sie die Einschreibungstermine an der UZH: Link
W3 KP2PUni-Dozierende
Kurzbeschreibung
Lernziel
InhaltDer Kurs ist sehr praktisch ausgelegt und es arbeiten in der Regel zwei Teilnehmer als Team an einem Computer. Für jede Lektion gibt es eine Informationsseite in Internet. Auf diesen Seiten sind die jeweils nötigen Information (Anleitungen, Datenzugang etc.) zugänglich. Zusätzlich sind für jede Stunde drei weitere Dinge
aufgelistet: 1) Voraussetzungen, 2) Vorbereitung und 3) Prüfungsrelevanter Stoff. Unter „Voraussetzungen“ sind Begriffe und Konzepte genannt, deren Verständnis für die Stunde wichtig sind und die als (von anderen Veranstaltungen) bekannt vorausgesetzt werden.
Unter „Vorbereitung“ sind z.B. Publikationen angegeben, die vor der Stunde gelesen werden sollen und Teil des Unterrichts sind. Unter „Prüfungsrelevanter Stoff“ finden Sie eine Liste der Techniken, Methoden und Konzepte, die Sie für die Prüfung beherrschen müssen.
SkriptDie Unterlagen sind auf dem Web verfügbar. Der Zugang wird in der Vorlesung bekannt gegeben.
651-1506-00LThe High-Mountain Cryosphere: Processes and Risks (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: GEO856

Beachten Sie die Einschreibungstermine an der UZH: Link
W3 KP2GUni-Dozierende
KurzbeschreibungPart I: Hazards in glacierized high-mountain regions
Hazard assessments in cold high-mountain areas with respect to glaciers and permafrost.

Part II: Paleoglaciology
Ice-related aspects of the recent earth and climate history (Ice Age, Holocene, 20. century): reconstruction/modeling of past glaciers/ice sheets and interpretation of information from ice cores.
LernzielPart I: Hazards in glacierized high-mountain regions
Knowledge about integrative hazard assessment techniques in high-mountain areas under conditions of climate change.

Part II: Paleoglaciology
Understanding of the role of glaciers and ice sheets in the climate system through time since the last Ice Age; knowledge of corresponding reconstruction techniques and of the glaciological basis for ice core interpretation.
InhaltPart I: Natural hazards in glacierised mountain regions
- Introduction and instruction e-learning, Hazard/risk concepts
- Introduction to Part II, Paleoglaciology
- e-learning glacier floods and ice avalanches
- Comments on glacier floods, Comments on ice avalanches, climate-induced glacier changes
- Recent case studies
- Application of remote sensing, Principles and applications of numerical mass movement models
- Glacier-clad volcanoes
- Feedbacks on exercises and test

Part II: Paleoglaciology
2-day block course (Friday and Saturday)
Including written test on Paleoglaciology, Subjects include:
- Former glaciers/ice sheets: outlines and geometry
- Former glaciers/ice sheets: flow, mass turnover, temperature, etc.
- Former glaciers/ice sheets: changes in time
- Ice cores: archive (embedding) characteristics
- Ice cores: Information carriers, polar und alpine examples
- Nuclear waste disposal and ice ages, climate change and sea level
SkriptPaleoglaciology (about 100p.)
Hazards in glacierized high-mountain regions (about 100p.)

available at the Geography Department, University of Zurich
Literaturrich reference list in lecture notes
Voraussetzungen / BesonderesPrecondition
- Getscher und Permafrost (651-4073-00)
Ergänzung in Biogeochemische Kreisläufe
NummerTitelTypECTSUmfangDozierende
701-1317-00LGlobal Biogeochemical Cycles and Climate Information W3 KP3GN. Gruber, M. Vogt
KurzbeschreibungThe human-induced emissions of carbon dioxide has led to atmospheric CO2 concentrations that Earth likely has no’t seen for the last 30 million years. This course aims to investigate and understand the impact of humans on Earth's biogeochemical cycles with a focus on the carbon cycle and its interaction with the physical climate system for the past, the present, and the future.
LernzielThis course aims to investigate the nature of the interaction between biogeochemical cycles on land and in the ocean with climate and how this interaction has evolved over time and will change in the future. Students are expected to participate actively in the course, which includes the critical reading of the pertinent literature and class presentations.
InhaltTopics discussed include: The anthropogenic perturbation of the global carbon cycle and climate. Response of land and oceanic ecosystems to past and future global changes; Interactions between biogeochemical cycles on land and in the ocean; Biogeochemical processes controlling carbon dioxide and oxygen in the ocean and atmosphere on time-scales from a few years to a few hundred thousand years.
SkriptSarmiento & Gruber (2006), Ocean Biogeochemical Dynamics, Princeton University Press. Additional handouts will be provided as needed. see website: Link
LiteraturSarmiento & Gruber (2006), Ocean Biogeochemical Dynamics, Princeton University Press, 526pp.

MacKenzie, F. T. (1999), Global biogeochemical cycles and the physical climate system, Global Change Instruction Program, UCAR, Boulder, CO, 69pp.

W. H. Schlesinger (1997), Biogeochemistry: An Analysis of Global Change, Academic Press.

Original literature.
Ergänzung in Globaler Wandel und Nachhaltigkeit
NummerTitelTypECTSUmfangDozierende
860-0012-00LCooperation and Conflict Over International Water Resources
Hinweis: Ersetzt 701-0462-01L "The Science and Politics of International Water Management".
Studierende, welche die 701-0462-01L bereits besucht haben, können hier die Kreditpunkte nicht nochmals anrechnen lassen.
W3 KP2SB. Wehrli, T. Bernauer, J. Mertens
KurzbeschreibungThis course focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river basins. It examines ways and means through which such challenges are addressed, and when and why international efforts in this respect succeed or fail.

This is a research seminar at the Master level. PhD students are also welcome.
LernzielThe students get an overview of (1) causes and consequences of water scarcity and water pollution problems in large international river basins; (2) they learn concepts to assess and mitigate such water challenges, and (3) they analyze when and why international efforts in this respect succeed or fail.
InhaltBased on lectures and discussion of scientific papers students acquire basic knowledge on contentious issues in managing international water resources, on the determinants of cooperation and conflict over international water issues, and on ways and means of mitigating conflict and promoting cooperation. Students will then, in teams of two and coached by Profs. Bernauer and Wehrli, do research on a case of their choice (i.e. an international river basin where riparian countries are trying to find solutions to water allocation and/or water quality problems). They will write a brief paper and present their findings during a final meeting at the end of the semester.
The first 4 and the last 2 dates are reserved for lectures and seminars. The students work on their case study from 22.03. to 17.05.
Skriptslides and papers will be distributed electronically
LiteraturThe UN World Water Development Report 2015 provides a broad overview of the topic
Link
Voraussetzungen / BesonderesThe course is open to Master and PhD students from any area of ETH.
751-5118-00LGlobal Change Biology Information W2 KP2GH. Bugmann, N. Buchmann, L. Hörtnagl, R. Snell
KurzbeschreibungThis course focuses on the effects of anthropogenic climate change as well as land use and land cover change on terrestrial systems. Our current understanding of the coupled human-environmental systems will be discussed, based on observations, experiments and modeling studies. Different management options for sustainable resource use, climate mitigation and adaptation will be studied.
LernzielStudents will understand consequences of global change at various spatial and temporal scales, be able to synthesize their knowledge in various disciplines in view of global change issues, know international and national treaties and negotiations concerning management and climate and land use/land cover change, and be able to evaluate different management options, including sustainable resource use and climate mitigation as well as adaptation options.

Students will learn to present scientific information to an audience of educated laymen by preparing an executive summary and an oral presentation to answer a specific scientific question. Students will get extensive feedback from teachers and peers. Thereby, students will also learn how to give constructive feedback to peers.
InhaltChanges in climate and land use are major issues that students will be faced with during their working life, independently of where they will work. Thus, an advanced understanding on how global change, biogeochemistry, land use practices, politics, and society interact is critical to act responsibly and work as agricultural or environmental scientists in the future.

Thus, during this course, the effects of global change (i.e., changes in climate, atmospheric chemistry as well as land use and land cover) on forest and agro-ecosystems will be presented and discussed. Effects on ecosystem structure, composition, productivity and biogeochemical cycling, but also on stability of production systems against disturbances will be addressed. Current scenarios and models for coupled human-environmental systems will be discussed. The advantages and disadvantages of different management options will be studied, including the sustainable resource use and climate mitigation as well as adaptation.
Voraussetzungen / BesonderesThis course is based on fundamental knowledge about plant ecophysiology, soil science, and ecology in general.
Ergänzung in nachhaltiger Energienutzung
NummerTitelTypECTSUmfangDozierende
701-0962-02LEnergietechnik und UmweltW3 KP2V + 1KT. Nussbaumer
KurzbeschreibungEinführung in die Ingenieurgrundlagen von Energieumwandlungsprozessen, Rolle der Energie für Klima und Luftverschmutzung sowie thermodynamische Grundlagen der Enerigeumwandlung, Techniken zur Wärme- und Krafterzeugung, zur Energieeinsparung im Gebäude sowie Anwendungen von Solarenergie und Bioenergie. Techniken zur Schadstoffminderung und Wirkungsgradsteigerung.
LernzielVerständnis der physikalischen Prozesse der Energieumwandlung.
Kenntnis der Anwendungen der Energietechnik sowie deren Wirkungsgrade, Umweltbelastungen und Verbesserungsmöglichkeiten als Grundlage für eine kompetente Beurteilung von Energietechniken. Kompetenz zur Beurteilung der Potenziale der erneuerbaren Enerigen und des Vergleichs verschiedener Prozessketten sowie der Anwendungen von Effizienzmassnahmen.
Inhalt- Grundlagen der Thermodynamik für das Verständnis von Energieumwandlungsverfahren.
- Ressourcen, Energiebedarf und Bedarfsentwicklung.
- Ökobilanz von Energiesystemen.
- Energiesparen in Gebäuden.
- Techniken zur Wärme- und Krafterzeugung aus fossilen und erneuerbaren Brennstoffen.
- Funktion von Verbrennungsmotor, Wärmekraftkopplung, Wärmepumpe, Wärmeübertrager, Gasturbine, Dampfturbine, Kombiprozess und Brennstoffzelle.
- Verbrennungsprozessen mit Schadstoffbildung und -minderung.
- Anwendung von Solarenergie und Bioenergie.
SkriptVollständiges Skript (400 Seiten) wird als pdf bereit gestellt.
Zum Kolloquium wird jede Woche eine Übung abgegeben, die in der Folgewoche mit Abgabe einer Musterlösung behandelt wird.
Literatur- Diekmann, B.; Heinloth, K.: Energie, 2. Auflage, Teubner-Verlag Stuttgart 1997, ISBN 3519130572
- Quaschning 2008, Volker: Regenerative Energiesysteme, 5. Auflage, Hanser, München 2007
- Kugeler, K; Phlippen, P.: Energietechnik, Springer1990 und Springer 1992 (2. Auflage)
227-0730-00LPower Market II - Modeling and Strategic Positioning Information W6 KP4GD. Reichelt, G. A. Koeppel
KurzbeschreibungOptionen in der Energiewirtschaft
Portfolio und Risiko Management: Hedging-Strategien und Risiko Bewertung
Optimierung und Hedging von Hydrokraftwerken
Bewertung von Kraftwerken mit Realoptionen
Kapazitätsmärkte und Quotensysteme
Komplexe Energielieferverträge mit Optionalitäten Strategische Positionierung von Energieversorgungsunternehmen
LernzielDie Studenten kennen die wesentlichen Derivate, die in der Elektrizitätswirtschaft zur Anwendung gelangen. Sie können Strategien zur Preisabsicherung erarbeiten bzw. bewerten. Sie verstehen die Optimierung von komplexen Wasserkraftwerksanlagen, kennen die Thematik der Kapazitätsmärkte und der Quotensysteme. Sie kennen die Grundlagen der Discounted Cash-flow (DCF) Methode sowie der Realoptionen und können sie für die Bewertung von Kraftwerken anwenden.
Die Studenten können komplexe Energielieferverträge in die einzelnen Komponenten zerlegen und die Risiken identifizieren.
InhaltOptionen in der Energiewirtschaft: Optionsbewertung mit Binominalen Bäumen und der Black-Scholes Formel, Sensitivitäten, implizite Volatilität
Portfolio und Risiko Management: Delta- und Gamma-neutrale Preisabsicherung, Vergleich und Bewertung von Hedging-Strategien, Risiko Identifikation und -bewertung (Fallbeispiel)
Optimierung und Hedging von Hydrokraftwerken
Bewertung von Kraftwerken, Projekten und el. Netzen mit der discounted cash-flow Methode und Anwendung von Realoptionen
Strategische Positionierung: Erarbeiten von verschiedenen Fällen (mini cases)
Kapazitätsmärkte und Quotensysteme
Anwendungen von Derivaten: komplexe Energielieferverträge mit Optionalitäten, flexible Produkte für Stromkunden
Quantifizieren des Gegenparteirisikos
Marketing des Produktes "Elektrizität"
SkriptHandouts - all material in English
Voraussetzungen / Besonderes2-tägige Exkursion, Referate von Vertretern aus der Wirtschaft
  • Erste Seite Vorherige Seite Seite  2  von  3 Nächste Seite Letzte Seite     Alle