Suchergebnis: Katalogdaten im Herbstsemester 2016

Umweltnaturwissenschaften Master Information
Vertiefung in Atmosphäre und Klima
Kolloquien und Seminare
NummerTitelTypECTSUmfangDozierende
651-4095-02LColloquium Atmosphere and Climate 2 Belegung eingeschränkt - Details anzeigen O1 KP1KH. Joos, C. Schär, D. N. Bresch, N. Gruber, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, H. Wernli, M. Wild
KurzbeschreibungThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
LernzielThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
651-4095-03LColloquium Atmosphere and Climate 3 Belegung eingeschränkt - Details anzeigen O1 KP1KH. Joos, C. Schär, D. N. Bresch, N. Gruber, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, H. Wernli, M. Wild
KurzbeschreibungThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
LernzielThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
Wahlfächer
Klimaprozesse und -wechselwirkungen
NummerTitelTypECTSUmfangDozierende
701-1221-00LDynamics of Large-Scale Atmospheric Flow Information W4 KP2V + 1UH. Wernli, S. Pfahl
KurzbeschreibungDynamische Synoptische Meteorologie
LernzielVerständnis für dynamische Prozesse in der Atmosphäre sowie deren
mathematisch-physikalische Formulierung.
InhaltDie Atmosphärenphysik II behandelt vor allem die dynamischen Prozesse in der Erdatmosphäre. Diskutiert werden die Bewegungsgesetze der Atmosphäre und die Dynamik und Wechselwirkungen von synoptischen Systemen - also den wetterbestimmenden Hoch- und Tiefdruckgebieten. Mathematische Grundlage hierfuer ist insbesondere die Theorie der quasi-geostrophischen Bewegung, die im Rahmen der Vorlesung hergeleitet und interpretiert wird.
SkriptDynamics of large-scale atmospheric flow
Literatur- Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004,
- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997
Voraussetzungen / BesonderesVoraussetzungen: Physik I, II, Umwelt Fluiddynamik
651-4057-00LClimate History and PalaeoclimatologyW3 KP2GS. Bernasconi, B. Ausin Gonzalez, A. Fernandez Bremer, A. Gilli
KurzbeschreibungThe course "Climate history and paleoclimatology gives an overview on climate through geological time and it provides insight into methods and tools used in paleoclimate research.
LernzielThe student will have an understanding of evolution of climate and its major forcing factors -orbital, atmosphere chemistry, tectonics- through geological time. He or she will understand interaction between life and climate and he or she will be familiar with the use of most common geochemical climate "proxies", he or she will be able to evaluate quality of marine and terrestrial sedimentary paleoclimate archives. The student will be able to estimate rates of changes in climate history and to recognize feedbacks between the biosphere and climate.
InhaltClimate system and earth history - climate forcing factors and feedback mechanisms of the geosphere, biosphere, and hydrosphere.

Geological time, stratigraphy, geological archives, climate archives, paleoclimate proxies

Climate through geological time: "lessons from the past"

Cretaceous greenhouse climate

The Late Paleocene Thermal Maximum (PETM)

Cenozoic Cooling

Onset and Intensification of Southern Hemisphere Glaciation

Onset and Intensification of Northern Hemisphere Glaciation

Pliocene warmth

Glacial and Interglacials

Millennial-scale climate variability during glaciations

The last deglaciation(s)

The Younger Dryas

Holocene climate - climate and societies
Atmosphärische Zusammensetzungen und Kreisläufe
NummerTitelTypECTSUmfangDozierende
701-1235-00LCloud Microphysics Information Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 16
W4 KP2V + 1UU. Lohmann, Z. A. Kanji
KurzbeschreibungClouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth`s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes.
LernzielThe learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation.
Inhaltsee: http://www.iac.ethz.ch/edu/courses/master/modules/cloud-microphysics.html
SkriptThis course will be designed as a reading course in 1-2 small groups of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth.
LiteraturPao K. Wang: Physics and dynamics of clouds and precipitation, Cambridge University Press, 2012
Voraussetzungen / BesonderesTarget group: Master students in Atmosphere and Climate
102-0635-01LLuftreinhaltungW6 KP4GB. Buchmann, P. Hofer
KurzbeschreibungEinführung in die Grundlagen der Luftreinhaltung. Zuerst werden Entstehung von Luftfremdstoffen, verursacht durch technische Prozesse, Emission dieser Stoffe in die Atmosphäre sowie die daraus resultierende Aussenluftbelastung diskutiert. Im zweiten Teil werden verschiedene Strategien und Techniken der Emissionsminderung sowie deren Anwendung auf aktuelle Problemfelder der Gesellschaft behandelt.
LernzielDie Studierenden verstehen die Mechanismen der Schadstoffbildung bei technischen Prozessen und kennen die Methoden, die in der Lufteinhaltung eingesetzt werden.
Die wichtigsten Emissionsquellen sind den Studierenden bekannt und sie verstehen Messmethoden, Datenerhebung und -analyse. Die Studierenden können Methoden und Massnahmen zur Luftreinhaltung beurteilen, Mess- und Kontrollsysteme vorschlagen sowie Effizienz und Aufwand abschätzen.
Die Studierenden kennen die verschiedenen Strategien und Verfahren der Luftreinhalte-technik und deren physikalisch-chemischen Wirkmechanismen. Sie können lufthygienische Vorgaben zur Emissionsminderung in ihre planerische Tätigkeit einbeziehen.
InhaltTeil 1 Luftreinhaltung: Emissionen, Immissionen, Transmission
Schadstoffflüsse und daraus resultierende Umweltbelastung
- Schadstoffbildung durch physikalische und chemische Prozesse
- Stoff- und Energiebilanz von Prozessen
- Emissionsmesstechnik & -messkonzepte
- Quantifizierung der Emissionen von Einzelquellen sowie Quellregionen
- Ausmass und die zeitliche Entwicklung der Emissionen (Schweiz und global)
- Ausbreitung und Verfrachtung von Luftfremdstoffe (Transmission)
- meteorologischen Einflussgrössen der Ausbreitung
- deterministische und stochastische Beschreibung der Ausbreitung
- Ausbreitungsmodelle (Gaussmodelle, Boxmodelle, Rezeptormodell)
- Ausmass und die zeitliche Entwicklung der Immissionen
- Immissionsmesskonzepte
- Ziele und Instrumente Schweizer Luftreinhaltepolitik

Teil 2 Luftreinhaltetechnik
- Die Emissionsminderung erfolgt durch Reduktion der Schadstoffbildung durch Ände-rung der ablaufenden Prozesse (produktionsintegrierte Massnahmen) sowie durch ver-schiedene Abgasreinigungstechniken (additive Massnahmen). Dabei wird gezeigt, dass die Vielfalt der technischen Verfahren auf die Anwendung von einigen wenigen physi-kalischen und chemischen Prinzipien zurückgeführt werden kann.
- Verfahren zur Feststoffabscheidung (Massenkraftabscheider, mechanische und elektrische Filtration, Wäscher) mit ihren unterschiedlichen Wirkmechanismen (Feldkräfte, Impaktion und Diffusionsprozesse) und deren Modellierung.
- Verfahren zur Abscheidung gasförmiger Schadstoffe und deren Beschreibung durch die treibenden Kräfte sowie durch Gleichgewicht und Geschwindigkeit der ablaufenden Prozesse (Absorption und Adsorption sowie thermische, katalytische und biologische Umwandlungen).
- Die Anwendung dieser Strategien und Techniken auf aktuelle Problemfelder.
Skript- Brigitte Buchmann, Luftreinhaltung, Part I
- Peter Hofer, Luftreinhaltung, Part II
- Vorlesungsfolien und Übungen
LiteraturLiteraturliste im Skript
Voraussetzungen / BesonderesHochschule Vorlesungen über grundlegende Physik, Chemie und Mathematik
651-4053-05LBoundary Layer MeteorologyW4 KP3GM. Rotach, P. Calanca
KurzbeschreibungThe Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues.
LernzielOverall goals of this course are given below. Focus is on the theoretical background and idealised concepts.
Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).
Inhalt- Introduction
- Turbulence
- Statistical tratment of turbulence, turbulent transport
- Conservation equations in a turbulent flow
- Closure problem and closure assumptions
- Scaling and similarity theory
- Spectral characteristics
- Concepts for non-ideal boundary layer conditions
Skriptavailable (i.e. in English)
Literatur- Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp.
- Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp.
- Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp.
- Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp.
Voraussetzungen / BesonderesUmwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science
Hydrologie und Wasserkreislauf
NummerTitelTypECTSUmfangDozierende
701-0535-00LEnvironmental Soil Physics/Vadose Zone Hydrology Information W3 KP2G + 2UD. Or
KurzbeschreibungThe course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/ near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales. Emphasis is given to land-atmosphere interactions, the role of plants on hydrological cycles, and biophysical processes in soils.
LernzielStudents are able to
- characterize quantitative knowledge needed to measure and parameterize structural, flow and transport properties of partially-saturated porous media.
- quantify driving forces and resulting fluxes of water, solute, and heat in soils.
- apply modern measurement methods and analytical tools for hydrological data collection
- conduct and interpret a limited number of experimental studies
- explain links between physical processes in the vadose-zone and major societal and environmental challenges
InhaltWeeks 1 to 3: Physical Properties of Soils and Other Porous Media – Units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil texture; particle size distributions; surface area; soil structure. Soil colloids and clay behavior

Soil Water Content and its Measurement - Definitions; measurement methods - gravimetric, neutron scattering, gamma attenuation; and time domain reflectometry; soil water storage and water balance.

Weeks 4 to 5: Soil Water Retention and Potential (Hydrostatics) - The energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); modern aspects of capillarity in porous media; units and calculations and measurement of equilibrium soil water potential components; soil water characteristic curves definitions and measurements; parametric models; hysteresis. Modern aspects of capillarity

Demo-Lab: Laboratory methods for determination of soil water characteristic curve (SWC), sensor pairing

Weeks 6 to 9: Water Flow in Soil - Hydrodynamics:
Part 1 - Laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; saturated flow; hydraulic conductivity and its measurement.

Lab #1: Measurement of saturated hydraulic conductivity in uniform and layered soil columns using the constant head method.

Part 2 - Unsaturated steady state flow; unsaturated hydraulic conductivity models and applications; non-steady flow and Richard’s Eq.; approximate solutions to infiltration (Green-Ampt, Philip); field methods for estimating soil hydraulic properties.
Midterm exam

Lab #2: Measurement of vertical infiltration into dry soil column - Green-Ampt, and Philip's approximations; infiltration rates and wetting front propagation.

Part 3 - Use of Hydrus model for simulation of unsaturated flow


Week 10 to 11: Energy Balance and Land Atmosphere Interactions - Radiation and energy balance; evapotranspiration definitions and estimation; transpiration, plant development and transpirtation coefficients – small and large scale influences on hydrological cycle; surface evaporation.

Week 12 to 13: Solute Transport in Soils – Transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion eq.; solutions for pulse and step solute application; parameter estimation; salt balance.

Lab #3: Miscible displacement and breakthrough curves for a conservative tracer through a column; data analysis and transport parameter estimation.

Additional topics:

Temperature and Heat Flow in Porous Media - Soil thermal properties; steady state heat flow; nonsteady heat flow; estimation of thermal properties; engineering applications.

Biological Processes in the Vaodse Zone – An overview of below-ground biological activity (plant roots, microbial, etc.); interplay between physical and biological processes. Focus on soil-atmosphere gaseous exchange; and challenges for bio- and phytoremediation.
SkriptClassnotes on website: Vadose Zone Hydrology, by Or D., J.M. Wraith, and M. Tuller
(available at the beginning of the semester)
http://www.step.ethz.ch/education/active-courses/vadose-zone-hydrology
LiteraturSupplemental textbook (not mandatory) -Environmental Soil Physics, by: D. Hillel
102-0287-00LFluvial Systems Information W3 KP2GP. Molnar
KurzbeschreibungThe course presents a view of the processes acting on and shaping the landscape and the fluvial landforms that result. The fluvial system is viewed in terms of the production and transport of sediment on hillslopes, the structure of the river network and channel morphology, fluvial processes in the river, riparian zone and floodplain, and basics of catchment and river management.
LernzielThe course has two fundamental aims: (1) it aims to provide environmental engineers with the physical process basis of fluvial system change, using the right language and terminology to describe landforms; and (2) it aims to provide quantitative skills in making simple and more complex predictions of change and the data and models required.
InhaltThe course consists of three sections: (1) Introduction to fluvial forms and processes and geomorphic concepts of landscape change, including climatic and human activities acting on the system. (2) The processes of sediment production, upland sheet-rill-gully erosion, basin sediment yield, rainfall-triggered landsliding, sediment budgets, and the modelling of the individual processes involved. (3) Processes in the river, floodplain and riparian zone, including river network topology, channel geometry, aquatic habitat, role of riparian vegetation, including basics of fluvial system management. The main focus of the course is hydrological and the scales of interest are field and catchment scales.
SkriptThere is no script.
LiteraturThe course materials consist of a series of 13 lecture presentations and notes to each lecture. The lectures were developed from textbooks, professional papers, and ongoing research activities of the instructor. All material is on the course webpage.
Voraussetzungen / BesonderesPrerequisites: Hydrology 1 and Hydrology 2 (or contact instructor).
651-2915-00LSeminar in HydrologyZ0 KP1SP. Burlando, J. W.  Kirchner, S. Löw, D. Or, C. Schär, M. Schirmer, S. I. Seneviratne, M. Stähli, C. H. Stamm, Uni-Dozierende
Kurzbeschreibung
Lernziel
651-4023-00LGroundwaterW4 KP3GM. O. Saar, X.‑Z. Kong
KurzbeschreibungThe course provides an introduction into quantitative analysis of groundwater flow and solute/heat transport. It is focussed on understanding, formulating, and solving groundwater flow and solute/heat transport problems.
Lernziela) Students understand the basic concepts of groundwater flow and solute/heat transport processes and boundary conditions.

b) Students are able to formulate simple, practical groundwater flow and solute/heat transport problems.

c) Students are able to understand and apply simple analytical and/or numerical solutions to fluid flow and solute/heat transport problems.
Inhalt1. Introduction to groundwater problems. Concepts to quantify properties of aquifers.

2. Flow equation. The generalised Darcy law.

3. The water balance equation.

4. Boundary conditions. Formulation of flow problems.

5. Analytical solutions to flow problems I

6. Analytical solutions to flow problems II

7. Finitie difference solution to flow problems.

8. Numerical solution to flow problems using a code.

9. Case studies for flow problems.

10. Concepts of transport modelling. Mass balance equation for contaminants.

11. Boundary conditons. Formulation of contaminant transport problems in groundwater.

12. Analytical solutions to transport problems I.

13. Analytical solutions to transport problems II

14. Numerical solution to simple transport problems using particle tracking technique.
SkriptHandouts of slides.

Script in English is planned.
LiteraturBear J., Hydraulics of Groundwater, McGraw-Hill, New York, 1979

Domenico P.A., and F.W. Schwartz, Physical and Chemical Hydrogeology, J. Wilson & Sons, New York, 1990

Chiang und Kinzelbach, 3-D Groundwater Modeling with PMWIN. Springer, 2001.

Kruseman G.P., de Ridder N.A., Analysis and evaluation of pumping test data. Wageningen International Institute for Land Reclamation and Improvement, 1991.

de Marsily G., Quantitative Hydrogeology, Academic Press, 1986
Weitere Wahlfächer
NummerTitelTypECTSUmfangDozierende
701-1237-00LSolar Ultraviolet RadiationW1 KP1VJ. Gröbner
KurzbeschreibungDiese Vorlesung gibt einen Einblick in das Thema solar ultraviolette Strahlung und ihre Effekte auf die Atmosphere und den Menschen. Die Vorlesung wird sowohl die Modelierung als auch die Messung von solarer UV Strahlung behandeln. Ein Schwerpunkt der Vorlesung wird auf die Messung von solarer UV Strahlung mittels verschiedenen Instrumenten gelegt (Filterradiometer und Spektroradiometer).
LernzielDiese Vorlesung wird dem Zuhörer einen Einblick in die Thematik solare UV Strahlung geben, und dessen Interaktion zwischen der Atmosphäre und der Biosphäre im detailliert beschreiben.
Inhalt1) Einführung in die Problematik – Motivation
Begriffe (UV-C, UV-B, UV-A,...)
Einfluss der UV Strahlung auf Biosphäre (Mensch, Tier, Pflanzen)
Positive und schädliche Effekte
Wirkungsspektrum, Konzept, Beispiele
UVIndex

2) Geschichtlicher Rückblick
Rayleigh - Himmelsblau
1907: Dorno, PMOD
1970: Bener, PMOD
1980: Berger, Erythemal sunburn meter
1990- : State of the Art

3) Extraterrestrische UV Strahlung
Spektrum
Energieverteilung
Variabilität (Spektral, zeitlich, relativ zu Totalstrahlung)
Satellitenmessungen, Übersicht

4) Einfluss der Atmosphäre auf die solare UV Strahlung
Atmosphärenaufbau
Beinflussende Parameter (Ozon, Wolken, ...)
Ozon, Stratosphärisches versus troposphärisches
Geschichte: Ozondepletion, Polare Ozonlöcher und Einfluss auf die UV Strahlung
Wolken
Aerosole
Rayleighstreuung
Trends (Ozon, Wolken, Aerosole)
Radiation Amplification Factor (RAF)

5-6) Strahlungstransfer
Strahlungstransfergleichung
Modellierung, DISORT
libRadtran, TUV, FASTRT
Parameter
Sensitivitätsstudien
Vergleiche mit Messungen
3-D Modellierung (MYSTIC)
Beer-Lambert Gesetz

7) Strahlungsmessungen
Instrumente zur Strahlungsmessung
Messgrössen: Irradiance (global, direct, diffus), radiance, aktinischer Fluss
Horizontale und geneigte Flächen
Generelle Problematik: Freiluftmessungen...
Qualitätssicherung

8) Solare UV Strahlungsmessungen
Problematik: Dynamik, Spektrale Variabilität, Alterung
Stabilität
Spezifische Instrumente: Filterradiometer, Spektroradiometer, Dosimetrie
Übersicht Aufbau und Verwendung

9-10) Solare UV Strahlungsmessgeräte
Spektroradiometer, Filterradiometer (Breit und schmalbandig)
Charakterisierung
Kalibriermethoden (Im Labor, im Feld)
Qualitätssicherung, Messkampagnen


11-12) Auswerteverfahren
Atmosphärische Parameter aus Strahlungsmessungen
Ozon, SO2
Albedo (Effektiv versus Lokal)
Aerosol Parameter (AOD, SSA, g, Teilchenverteilungen)
Zusammenspiel Messungen - Modellierung
Aktinische UV-Strahlungsflüsse und Bestimmung von atmosphärischen Photolysefrequenzen

13) UV Klimatologie
Trends
UV Klimatologie durch Messnetze
UV Klimatologie durch Satellitenmessungen am Beispiel von TOMS
Modellierung am Beispiel Meteosat-JRC
UV Rekonstruktionen

14) Aktuelle Forschungen
Internationale Projekte, Stand der Forschung
651-4273-00LNumerical Modelling in Fortran Information W3 KP2VP. Tackley
KurzbeschreibungThis course gives an introduction to programming in FORTRAN95, and is suitable for students who have only minimal programming experience. The focus will be on Fortran 95, but Fortran 77 will also be covered for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts.
LernzielFORTRAN 95 is a modern programming language that is specifically designed for scientific and engineering applications. This course gives an introduction to programming in this language, and is suitable for students who have only minimal programming experience, for example with MATLAB scripts. The focus will be on Fortran 95, but Fortran 77 will also be covered for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts, using example scientific problems relevant to Earth science.
SkriptSee http://jupiter.ethz.ch/~pjt/FORTRAN/FortranClass.html
651-4273-01LNumerical Modelling in Fortran (Project)
Voraussetzung: Besuch der Lehrveranstaltung 651-4273-00L "Numerical Modelling in Fortran" ist obligatorisch.
W1 KP1UP. Tackley
KurzbeschreibungThis course gives an introduction to programming in FORTRAN95, and is suitable for students who have only minimal programming experience. The focus will be on Fortran 95, but Fortran 77 will also be covered for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts.
LernzielFORTRAN 95 is a modern programming language that is specifically designed for scientific and engineering applications. This course gives an introduction to programming in this language, and is suitable for students who have only minimal programming experience, for example with MATLAB scripts. The focus will be on Fortran 95, but Fortran 77 will also be covered for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts, using example scientific problems relevant to Earth science.
InhaltThe project consists of writing a Fortran program to solve a problem agreed upon between the instructor and student; the topic is often related to (and helps to advance) the student's Masters or PhD research. The project is typically started towards the end of the end of the main Fortran class when the student has acquired sufficient programming skills, and is due by the end of Semesterprüfung week.
SkriptSee http://jupiter.ethz.ch/~pjt/FORTRAN/FortranProject.html
Vertiefung in Biogeochemie und Schadstoffdynamik
Biogeochemische Prozesse
NummerTitelTypECTSUmfangDozierende
701-1313-00LIsotopic and Organic Tracers in Biogeochemistry Information W3 KP2GR. Kipfer, S. Ladd
KurzbeschreibungThe course introduces the scientific concepts and typical applications of tracers in biogeochemistry. The course covers stable and radioactive isotopes, geochemical tracers and biomarkers and their application in biogeochemical processes as well as regional and global cycles. The course provides essential theoretical background for the lab course "Isotopic and Organic Tracers Laboratory".
LernzielThe course aims at understanding the fractionation of stable isotopes in biogeochemical processes. Students learn to know the origin and decay modes of relevant radiogenic isotopes. They discover the spectrum of possible geochemical tracers and biomarkers, their potential and limitations and get familiar with important applications
InhaltGeogenic and cosmogenic radionuclides (sources, decay chains);
stable isotopes in biogeochemistry (nataural abundance, fractionation);
geochemical tracers for processes such as erosion, productivity, redox fronts; biomarkers for specific microbial processes.
Skripthandouts will be provided for every chapter
LiteraturA list of relevant books and papers will be provided
Voraussetzungen / BesonderesStudents should have a basic knowledge of biogeochemical processes (BSc course on Biogeochemical processes in aquatic systems or equivalent)
701-1315-00LBiogeochemistry of Trace ElementsW3 KP2GA. Voegelin, M. Etique, L. Winkel
KurzbeschreibungThe course addresses the biogeochemical classification and behavior of trace elements, including key processes driving the cycling of important trace elements in aquatic and terrestrial environments and the coupling of abiotic and biotic transformation processes of trace elements. Examples of the role of trace elements in natural or engineered systems will be presented and discussed in the course.
LernzielThe students are familiar with the chemical characteristics, the environmental behavior and fate, and the biogeochemical reactivity of different groups of trace elements. They are able to apply their knowledge on the interaction of trace elements with geosphere components and on abiotic and biotic transformation processes of trace elements to discuss and evaluate the behavior and impact of trace elements in aquatic and terrestrial systems.
Inhalt(i) Definition, importance and biogeochemical classification of trace elements. (ii) Key biogeochemical processes controlling the cycling of different trace elements (base metals, redox-sensitive and chalcophile elements, volatile trace elements) in natural and engineered environments. (iii) Abiotic and biotic processes that determine the environmental fate and impact of selected trace elements.
SkriptSelected handouts (lecture notes, literature, exercises) will be distributed during the course.
Voraussetzungen / BesonderesStudents are expected to be familiar with the basic concepts of aquatic and soil chemistry covered in the respective classes at the bachelor level (soil mineralogy, soil organic matter, acid-base and redox reactions, complexation and sorption reactions, precipitation/dissolution reactions, thermodynamics, kinetics, carbonate buffer system).
This lecture is a prerequisite for attending the laboratory course "Trace elements laboratory".
701-1316-00LPhysical Transport Processes in the Natural EnvironmentW3 KP2GJ. W.  Kirchner
KurzbeschreibungFluid flows transport all manner of biologically important gases, nutrients, toxins, contaminants, spores and seeds, as well as a wide range of organisms themselves. This course explores the physics of fluids in the natural environment, with emphasis on the transport, dispersion, and mixing of solutes and entrained particles, and their implications for biological and biogeochemical processes.
LernzielStudents will learn key concepts of fluid mechanics and how to apply them to environmental problems. Weekly exercises based on real-world data will develop core skills in analysis, interpretation, and problem-solving.
Inhaltdimensional analysis, similarity, and scaling
solute transport in laminar and turbulent flows
transport and dispersion in porous media
transport of sediment (and adsorbed contaminants) by air and water
anomalous dispersion
SkriptThe course is under development. Lecture materials will be distributed as they become available.
Anwendungen
NummerTitelTypECTSUmfangDozierende
701-1341-00LWater Resources and Drinking WaterW3 KP2GS. Hug, M. Berg, F. Hammes, U. von Gunten
KurzbeschreibungThe course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.
LernzielThe goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality.
InhaltThe course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed.
SkriptHandouts will be distributed
LiteraturWill be mentioned in handouts
701-1346-00LCarbon Mitigation Information W3 KP2GN. Gruber
KurzbeschreibungFuture climate change can only kept within reasonable bounds when CO2 emissions are drastically reduced. In this course, we will discuss a portfolio of options involving the alteration of natural carbon sinks and carbon sequestration. The course includes introductory lectures, presentations from guest speakers from industry and the public sector, and final presentations by the students.
LernzielThe goal of this course is to investigate, as a group, a particular set of carbon mitigation/sequestration options and to evaluate their potential, their cost, and their consequences.
InhaltFrom the large number of carbon sequestration/mitigation options, a few options will be selected and then investigated in detail by the students. The results of this research will then be presented to the other students, the involved faculty, and discussed in detail by the whole group.
SkriptNone
LiteraturWill be identified based on the chosen topic.
Voraussetzungen / BesonderesExam: No final exam. Pass/No-Pass is assigned based on the quality of the presentation and ensuing discussion.
701-1351-00LNanomaterials in the EnvironmentW3 KP2GB. Nowack, T. Bucheli
KurzbeschreibungThe lecture provides an overview on the behavior and effects of engineered nanomaterials in the environment as far as they are currently understood. The course will cover definitions, analysis, fate in technical and natural systems, effects (nano-ecotoxicology) and environmental risk assessment of nanomaterials.
Lernziel- Successful application of knowledge gained in the traditional disciplines of environmental sciences (e.g. biogeochemistry, environmental chemistry) to elucidate nanomaterial fate and behavior in the environment
- Identify key parameters of nanomaterials that potentially influence their environmental fate and behavior
- Get acquainted with the most common analytical tools for the quantification of nanomaterials in the environment
- Critical assessment of current state of research in this juvenile field, including the sometimes controversial literature data
InhaltTopics

- Definitions; nano-effects; engineered, natural and incidental nanoparticles
- Sources and release; Material flow modeling
- Analysis in environmental samples
- Fate in technical systems: water treatment, waste incineration
- Fate in the environment: water and soil
- Effects: nano-ecotoxicology
- Environmental risk assessment


Group work

Case studies about specific nanomaterials in environmental systems, topics will be provided
Written report submitted and presentation at the end of the lecture
SkriptHandouts will be provided
Literaturwill be provided during lecture
  • Erste Seite Vorherige Seite Seite  2  von  11 Nächste Seite Letzte Seite