Search result: Catalogue data in Autumn Semester 2016

Health Sciences and Technology Master Information
Major in Human Movement Science and Sport
Electives
Elective Courses II
NumberTitleTypeECTSHoursLecturers
376-1720-00LApplication of MATLAB in the Human Movement SciencesW2 credits2GR.  van de Langenberg
AbstractStudents will learn to import, process and graphically present experimental data using the MATLAB computing environment. Both the data and the methods of analysis will be typical for experiments in Human Movement Science (i.e. kinematics, kinetics and electromyography).
ObjectiveStudents will acquire the ability to independently load, plot, and process kinematic, kinetic and electromyographical data using the MATLAB computing environment.
ContentDrawbacks of Excel; Possibilities in MATLAB; Import of several data formats; Plot of one and more signals; Removing of an offset and filtering of data based on self-written functions; Normalisation and parametrisation of data; Reliability; Interpolation, Differentiation and Integration in MATLAB.
LiteratureDuring the lecture, several electronically available MATLAB introductions are indicated. Course-specific scripts will be provided by the lecturer.
Prerequisites / NoticeA Laptop with MATLAB installed (v2009 or higher) and wireless internet access is mandatory. Two students can share a laptop if necessary. A MATLAB student version can be obtained at Stud-IDES for free.
376-1722-00LSpinal Cord Injury and Exercise
Prerequisite: Anatomy and Physiology
W2 credits2VC. Perret
AbstractIntensive discussion concerning complications of a spinal cord injury and their consequences on trainability and exercise performance of persons sitting in a wheelchair. Overview on the clinical application of exercise testing as well as on the implementation of sport scientific findings to optimise performance of spinal cord injured subjects in rehabilitation and elite sports.
ObjectiveKnowledge of the pathophysiology and the concomitant complications of a spinal cord injury and the consequences for physical exercise and trainability during rehabilitation as well as in recreational and elite sport.
ContentThe following issues will be discussed: Epidemiology and etiology of spinal cord injury; complications and consequences of spinal cord injury; trainability/exercise physiology and spinal cord injury; history and organisation of wheelchair sports; elite sport and spinal cord injury
LiteratureGeneral literature:

G.A. Zäch, H. G. Koch
Paraplegie - ganzheitliche Rehabilitation
Karger-Verlag, 2006
ISBN 3-8055-7980-2

V. Goosey-Tolfrey
Wheelchair sport: A complete guide for athletes, coaches and teachers
Human Kinetics, 2010

Y.C. Vanlandewijck, W.R. Thompson
The Paralympic Athlete
Wiley-Blackwell, 2011
ISBN 978-1-4443-3404-3

Liz Broad
Sports Nutrition for Paralympic Athletes
CRC Press 2014
ISBN 978-1-4665-0756-2
Prerequisites / NoticeVoraussetzung:Vorlesung Anatomie/Physiologie besucht!
376-1974-00LColloquium in Biomechanics Information W2 credits2KB. Helgason, S. J. Ferguson, R. Müller, J. G. Snedeker, B. Taylor, K. Würtz-Kozak, M. Zenobi-Wong
AbstractCurrent topics in biomechanics presented by speakers from academia and industry.
ObjectiveGetting insight into actual areas and problems of biomechanics.
376-1985-00LTrauma BiomechanicsW4 credits2V + 1UK.‑U. Schmitt, M. H. Muser
AbstractTrauma biomechanics in an interdisciplinary research field investigating the biomechanics of injuries and related subjects such as prevention. The lecture provides an introduction to the basic principles of trauma biomechanics.
ObjectiveIntroduction to the basic principles of trauma biomechanics.
ContentThis lecture serves as an introduction to the field of trauma biomechanics. Emphasis is placed on the interdisciplinary nature of impact biomechanics, which uses the combination of fundamental engineering principles and advanced medical technologies to develop injury prevention measures. Topics include: accident statistics and accident reconstruction, biomechanical response of the human to impact loading, injury mechanisms and injury criteria, test methods (including crash tests), computer simulations using multi-body and finite element modelling techniques, aspects of passive safety of vehicles (focusing on restraint systems and vehicle compatibility). Real world examples mainly from automobile safety are used to augment lecture material.
Lecture notesHandouts will be made available.
LiteratureSchmitt K-U, Niederer P, M. Muser, Walz F: "Trauma Biomechanics - An Introduction to Injury Biomechanics", Springer Verlag
376-2017-00LBiomechanics of Sports Injuries and RehabilitationW3 credits2VK.‑U. Schmitt, J. Goldhahn
AbstractThis lectures introduces the basic principles of injury mechanics and rehabilitation focussing on sports injuries.
ObjectiveWithin the scope of this lecture you will learn the basic principles of trauma biomechanics. Based on examples from sports, you will get to know different mechanisms that can possibly result in injury. Investigating the background and cause of injury should allow you to assess the injury risk for sports activities. Furthermore you should be able to develop measures to prevent such injury.
ContentThis lecture deals with the basic principles of injury mechanics and rehabilitation. Mechanisms that can result in injury are presented. Furthermore possibilities to prevent injuries are discussed. Thereby the lecture focuses on sports injuries.
Lecture notesHandouts will be made available.
LiteratureSchmitt K-U, Niederer P, M. Muser, Walz F: "Trauma Biomechanics - Accidental Injury in traffic and sports", Springer Verlag
Prerequisites / NoticeA course work is required. The mark of this course work contributes to the final credits for this lecture. Details will be given during the first lecture.
376-2019-00LApplied Movement Analysis Information W2 credits2GR. Scharpf, S. Lorenzetti
AbstractBased on practical examples out of sport, everyday movement and therapy, students use and compare different methods of movement analysis.
ObjectiveStudents are able to assess human movement using different methods of movement analysis.
ContentDuring the course students get acquainted with different methods of movement analysis such as: functional, morphological, clinical, mechanical, and others.
Based on practical examples, these methods are used and compared. The examples range from sport, everyday movement and therapy, such as hockey, gymnastics, acrobatics, badminton, gait / running and strength training. In the first phase of the class, the different approaches are applied. In the second phase, small teams are working on individual projects. These will be discussed and presented in plenum.
Lecture notesClass material will be distributed using the moodle platform.
551-1153-00LSystems Biology of Metabolism
Number of participants limited to 15.
W4 credits2VU. Sauer, N. Zamboni, M. Zampieri
AbstractStarting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts.
ObjectiveDevelop a deeper understanding of how relevant biological problems can be solved, thereby providing advanced insights to key experimental and computational methods in systems biology.
ContentThe course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics. For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem areas range from microbial metabolism to cancer cell metabolism and from metabolic networks to regulation networks in populations and single cells. Key methods to be covered are various modeling approaches, metabolic flux analyses, metabolomics and other omics.
Lecture notesScript and original publications will be supplied during the course.
Prerequisites / NoticeThe course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry.
752-6105-00LEpidemiology and Prevention
Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module CS16_101 at UZH.

Please mind the ETH enrolment deadlines for UZH students: Link
W3 credits2VM. Puhan, R. Heusser
AbstractThe module „Epidemiology and prevention“ describes the process of scientific discovery from the detection of a disease and its causes, to the development and evaluation of preventive and treatment interventions and to improved population health.
ObjectiveThe overall goal of the course is to introduce students to epidemiological thinking and methods, which are criticial pillars for medical and public health research. Students will also become aware on how epidemiological facts are used in prevention, practice and politics.
ContentThe module „Epidemiology and prevention“ follows an overall framework that describes the course of scientific discovery from the detection of a disease to the development of prevention and treatment interventions and their evaluation in clinical trials and real world settings. We will discuss study designs in the context of existing knowledge and the type of evidence needed to advance knowledge. Examples form nutrition, chronic and infectious diseases will be used in order to show the underlying concepts and methods.
752-6151-00LPublic Health ConceptsW3 credits2VR. Heusser
AbstractThe module "public health concepts" offers an introduction to key principles of public health. Students get acquainted with the concepts and methods of epidemiology. Students also learn to use epidemiological data for prevention and health promotion purposes. Public health concepts and intervention strategies are presented, using examples from infectious and chronic diseases.
ObjectiveAt the end of this module students are able:
- to interpret the results of epidemiological studies
- to critically assess scientific literature
- to know the definition, dimensions and determinants of health
- to plan public health interventions and health promotion projects
ContentConcepts of descriptive and analytical epidemiology, study designs, measures of effect, confounding and bias, screening, surveilllance, definition of health and health promotion, health dimensions and health determinants, prevention strategies, public health interventions, public health action cycle, epidemiology and prevention of infectious and chronic diseases (HIV, Tuberculosis, Obesity, Public health nutrition).
Lecture notesHandouts are provided to students in the classroom.
Prerequisites / NoticeLanguage of the course is english
752-6403-00LNutrition and PerformanceW2 credits2VS. Mettler, M. B. Zimmermann
AbstractThe course introduces basic concepts of the interaction between nutrition and exercise and cognitive performance.
ObjectiveTo understand the potential effects of nutrition on exercise performance, with a focus on concepts and principles of nutrition before, during and after exercise.
ContentThe course will cover elementary aspects of sports nutrition physiology, including carbohydrate, glycogen, fat, protein and energy metabolism. A main focus will be to understand nutritional aspects before exercise to be prepared for intensive exercise bouts, how exercise performance can be supported by nutrition during exercise and how recovery can be assisted by nutrition after exercise.
Although this is a scientific course, it is a goal of the course to translate basic sports nutrition science into practical sports nutrition examples.
Lecture notesLecture slides and required handouts will be available on the ETH website.
LiteratureInformation on further reading will be announced during the lecture. There will be some mandatory as well as voluntary readings.
Prerequisites / NoticeGeneral knowledge about nutrition, human biology, physiology and biochemistry is a prerequisite for this course. The course builds on basic nutrition and biochemistry knowledge to address exercise and performance related aspects of nutrition.

The course is designed for 3rd year Bachelor students, Master students and postgraduate students (MAS/CAS).

Language: English

It is strongly recommended to attend the lectures. The lecture (including the handouts) is not designed for distance education.
  • First page Previous page Page  2  of  2     All