Das Frühjahrssemester 2021 findet bis auf Weiteres online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind. Bitte beachten Sie die Informationen der Dozierenden.

Suchergebnis: Katalogdaten im Herbstsemester 2017

Informatik Master Information
Vertiefungsfächer
Vertiefung in Information Security
Wahlfächer der Vertiefung in Information Security
NummerTitelTypECTSUmfangDozierende
263-4630-00LComputer-Aided Modelling and Reasoning Information
In the Master Programme max. 10 credits can be accounted by Labs on top of the Interfocus Courses. Additional Labs will be listed on the Addendum.
W8 KP7PA. Lochbihler, D. Traytel
KurzbeschreibungThe "computer-aided modelling and reasoning" lab is a hands-on course about using an interactive theorem prover to construct formal models of algorithms, protocols, and programming languages and to reason about their properties. The lab has two parts: The first introduces various modelling and proof techniques. The second part consists of a project in which the students apply these techniques
LernzielThe students learn to effectively use a theorem prover to create unambiguous models and rigorously analyse them. They learn how to write precise and concise specifications, to exploit the theorem prover as a tool for checking and analysing such models and for taming their complexity, and to extract certified executable implementations from such specifications.
InhaltThe "computer-aided modelling and reasoning" lab is a hands-on course about using an interactive theorem prover to construct formal models of algorithms, protocols, and programming languages and to reason about their properties. The focus is on applying logical methods to concrete problems supported by a theorem prover. The course will demonstrate the challenges of formal rigor, but also the benefits of machine support in modelling, proving and validating.

The lab will have two parts: The first part introduces basic and advanced modelling techniques (functional programs, inductive definitions, modules), the associated proof techniques (term rewriting, resolution, induction, proof automation), and compilation of the models to certified executable code. In the second part, the students work in teams of two on a project assignment in which they apply these techniques: they build a formal model and prove its desired properties. The project lies in the area of programming languages, model checking, or information security.
LiteraturTextbook: Tobias Nipkow, Gerwin Klein. Concrete Semantics, part 1 (www.concrete-semantics.org)
Seminar in Information Security
NummerTitelTypECTSUmfangDozierende
252-4601-00LCurrent Topics in Information Security Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 24.
W2 KP2SD. Basin, S. Capkun, A. Perrig
KurzbeschreibungThe seminar covers various topics in information security: security protocols (models, specification & verification), trust management, access control, non-interference, side-channel attacks, identity-based cryptography, host-based attack detection, anomaly detection in backbone networks, key-management for sensor networks.
LernzielThe main goals of the seminar are the independent study of scientific literature and assessment of its contributions as well as learning and practicing presentation techniques.
InhaltThe seminar covers various topics in information security, including network security, cryptography and security protocols. The participants are expected to read a scientific paper and present it in a 35-40 min talk. At the beginning of the semester a short introduction to presentation techniques will be given.

Selected Topics

- security protocols: models, specification & verification
- trust management, access control and non-interference
- side-channel attacks
- identity-based cryptography
- host-based attack detection
- anomaly detection in backbone networks
- key-management for sensor networks
LiteraturThe reading list will be published on the course web site.
Vertiefung in Information Systems
Kernfächer der Vertiefung in Information Systems
NummerTitelTypECTSUmfangDozierende
252-0463-00LSecurity Engineering Information W5 KP2V + 2UD. Basin
KurzbeschreibungSubject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements&risk analysis, system modeling&model-based development methods, implementation-level security, and evaluation criteria for secure systems
LernzielSecurity engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software.
Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems
InhaltSecurity engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software.
Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems

Modules taught:

1. Introduction
- Introduction of Infsec group and speakers
- Security meets SW engineering: an introduction
- The activities of SW engineering, and where security fits in
- Overview of this class
2. Requirements Engineering: Security Requirements and some Analysis
- overview: functional and non-functional requirements
- use cases, misuse cases, sequence diagrams
- safety and security
- FMEA, FTA, attack trees
3. Modeling in the design activities
- structure, behavior, and data flow
- class diagrams, statecharts
4. Model-driven security for access control (design)
- SecureUML as a language for access control
- Combining Design Modeling Languages with SecureUML
- Semantics, i.e., what does it all mean,
- Generation
- Examples and experience
5. Model-driven security (Part II)
- Continuation of above topics
6. Security patterns (design and implementation)
7. Implementation-level security
- Buffer overflows
- Input checking
- Injection attacks
8. Testing
- overview
- model-based testing
- testing security properties
9. Risk analysis and management 1 (project management)
- "risk": assets, threats, vulnerabilities, risk
- risk assessment: quantitative and qualitative
- safeguards
- generic risk analysis procedure
- The OCTAVE approach
10. Risk analysis: IT baseline protection
- Overview
- Example
11. Evaluation criteria
- CMMI
- systems security engineering CMM
- common criteria
12. Guest lecture
- TBA
Literatur- Ross Anderson: Security Engineering, Wiley, 2001.
- Matt Bishop: Computer Security, Pearson Education, 2003.
- Ian Sommerville: Software Engineering, 6th ed., Addison-Wesley, 2001.
- John Viega, Gary McGraw: Building Secure Software, Addison-Wesley, 2002.
- Further relevant books and journal/conference articles will be announced in the lecture.
Voraussetzungen / BesonderesPrerequisite: Class on Information Security
252-0535-00LMachine Learning Information W8 KP3V + 2U + 2AJ. M. Buhmann
KurzbeschreibungMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
LernzielStudents will be familiarized with the most important concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. A machine learning project will provide an opportunity to test the machine learning algorithms on real world data.
InhaltThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Bayesian theory of optimal decisions
- Maximum likelihood and Bayesian parameter inference
- Classification with discriminant functions: Perceptrons, Fisher's LDA and support vector machines (SVM)
- Ensemble methods: Bagging and Boosting
- Regression: least squares, ridge and LASSO penalization, non-linear regression and the bias-variance trade-off
- Non parametric density estimation: Parzen windows, nearest nieghbour
- Dimension reduction: principal component analysis (PCA) and beyond
SkriptNo lecture notes, but slides will be made available on the course webpage.
LiteraturC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Voraussetzungen / BesonderesThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should at least have followed one previous course offered by the Machine Learning Institute (e.g., CIL or LIS) or an equivalent course offered by another institution.
Wahlfächer der Vertiefung in Information Systems
NummerTitelTypECTSUmfangDozierende
252-0373-00LMobile and Personal Information Systems Information
The course will be offered for the last time.
W4 KP2V + 1UM. Norrie
KurzbeschreibungThe course examines how traditional information system architectures and technologies have been adapted to support various forms of mobile and personal information systems. Topics to be covered include: databases of mobile objects; context-aware services; opportunistic information sharing; ambient information; pervasive display systems.
LernzielStudents will be introduced to a variety of novel information services and architectures developed for mobile environments in order to gain insight into the requirements and processes involved in designing and developing such systems and learning to think beyond traditional information systems.
InhaltAdvances in mobile devices and communication technologies have led to a rapid increase in demands for various forms of mobile information systems where the users, the applications and the databases themselves may be mobile. Based on both lectures and breakout sessions, this course examines the impact of the different forms of mobility and collaboration that systems require nowadays and how these influence the design of systems at the database, the application and the user interface level. For example, traditional data management techniques have to be adapted to meet the requirements of such systems and cope with new connection, access and synchronisation issues. As mobile devices have increasingly become integrated into the users' lives and are expected to support a range of activities in different environments, applications should be context-aware, adapting functionality, information delivery and the user interfaces to the current environment and task. Various forms of software and hardware sensors may be used to determine the current context, raising interesting issues for discussion. Finally, user mobility, and the varying and intermittent connectivity that it implies, gives rise to new forms of dynamic collaboration that require lightweight, but flexible, mechanisms for information synchronisation and consistency maintenance. Here, the interplay of mobile, personal and social context will receive special attention.
263-3010-00LBig Data Information Belegung eingeschränkt - Details anzeigen W8 KP3V + 2U + 2AG. Fourny
KurzbeschreibungThe key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations.
LernzielThis combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.
InhaltThis course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. The material is organized along three axes: data in the large, data in the small, data in the very small. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

- physical storage: distributed file systems (HDFS), object storage(S3), key-value stores

- logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP)

- data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro)

- data shapes and models (tables, trees, graphs, cubes)

- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)

- an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX)

- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)

- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)

- resource management (YARN)

- what a data center is made of and why it matters (racks, nodes, ...)

- underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j)

- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)

- applications.

Large scale analytics and machine learning are outside of the scope of this course.

Guest lectures planned so far:
- Bart Samwel (Google) on F1, Spanner
LiteraturPapers from scientific conferences and journals. References will be given as part of the course material during the semester.
Voraussetzungen / BesonderesThis course, in the autumn semester, is only intended for:
- Computer Science students
- Data Science students
- CBB students with a Computer Science background

Another version of this course will be offered in Spring for students of other departments. However, if you would like to already start learning about databases now, a course worth taking as a preparation/good prequel to the Spring edition of Big Data is the "Information Systems for Engineers" course, offered this Fall for other departments as well, and introducing relational databases and SQL.
263-3210-00LDeep Learning Information Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 300
W4 KP2V + 1UT. Hofmann
KurzbeschreibungDeep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.
LernzielIn recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.
Voraussetzungen / BesonderesThis is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following conditions:
1) The number of participants is limited to 300 students (MSc and PhDs).
2) Students must have taken the exam in Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

Machine Learning
https://ml2.inf.ethz.ch/courses/ml/

Computational Intelligence Lab
http://da.inf.ethz.ch/teaching/2017/CIL/

Learning and Intelligent Systems
https://las.inf.ethz.ch/teaching/lis-s17

Statistical Learning Theory
http://ml2.inf.ethz.ch/courses/slt/

Computational Statistics
https://stat.ethz.ch/education/semesters/ss2012/CompStat/sk.pdf

Probabilistic Artificial Intelligence
https://las.inf.ethz.ch/teaching/pai-f16

Data Mining: Learning from Large Data Sets
https://las.inf.ethz.ch/teaching/dm-f16
263-3300-00LData Science Lab Information Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 30.

Im Masterstudium können zusätzlich zu den Vertiefungsübergreifenden Fächern nur max. 10 Kreditpunkte über Laboratorien erarbeitet werden. Weitere Laboratorien werden auf dem Beiblatt aufgeführt.
W10 KP9PC. Zhang, K. Schawinski
KurzbeschreibungIn this class, we bring together data science applications
provided by ETH researchers outside computer science and
teams of computer science master's students. Two to three
students will form a team working on data science/machine
learning-related research topics provided by scientists in
a diverse range of domains such as astronomy, biology,
social sciences etc.
LernzielThe goal of this class if for students to gain experience
of dealing with data science and machine learning applications
"in the wild". Students are expected to go through the full
process starting from data cleaning, modeling, execution,
debugging, error analysis, and quality/performance refinement.

Website: https://dslab.io
Voraussetzungen / BesonderesEach student is required to send the lecturer their CV
and transcript and the lecturer will decide the enrollment
on a per-student basis. Moreover, the students are expected
to have experience about machine learning and deep learning.

EMAIL to send CV: ce.zhang@inf.ethz.ch
263-5200-00LData Mining: Learning from Large Data Sets Information W4 KP2V + 1UA. Krause, Y. Levy
KurzbeschreibungMany scientific and commercial applications require insights from massive, high-dimensional data sets. This courses introduces principled, state-of-the-art techniques from statistics, algorithms and discrete and convex optimization for learning from such large data sets. The course both covers theoretical foundations and practical applications.
LernzielMany scientific and commercial applications require us to obtain insights from massive, high-dimensional data sets. In this graduate-level course, we will study principled, state-of-the-art techniques from statistics, algorithms and discrete and convex optimization for learning from such large data sets. The course will both cover theoretical foundations and practical applications.
InhaltTopics covered:
- Dealing with large data (Data centers; Map-Reduce/Hadoop; Amazon Mechanical Turk)
- Fast nearest neighbor methods (Shingling, locality sensitive hashing)
- Online learning (Online optimization and regret minimization, online convex programming, applications to large-scale Support Vector Machines)
- Multi-armed bandits (exploration-exploitation tradeoffs, applications to online advertising and relevance feedback)
- Active learning (uncertainty sampling, pool-based methods, label complexity)
- Dimension reduction (random projections, nonlinear methods)
- Data streams (Sketches, coresets, applications to online clustering)
- Recommender systems
Voraussetzungen / BesonderesPrerequisites: Solid basic knowledge in statistics, algorithms and programming. Background in machine learning is helpful but not required.
263-5210-00LProbabilistic Artificial Intelligence Information W4 KP2V + 1UA. Krause
KurzbeschreibungThis course introduces core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet.
LernzielHow can we build systems that perform well in uncertain environments and unforeseen situations? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet. The course is designed for upper-level undergraduate and graduate students.
InhaltTopics covered:
- Search (BFS, DFS, A*), constraint satisfaction and optimization
- Tutorial in logic (propositional, first-order)
- Probability
- Bayesian Networks (models, exact and approximative inference, learning) - Temporal models (Hidden Markov Models, Dynamic Bayesian Networks)
- Probabilistic palnning (MDPs, POMPDPs)
- Reinforcement learning
- Combining logic and probability
Voraussetzungen / BesonderesSolid basic knowledge in statistics, algorithms and programming
252-0341-01LInformation Retrieval Information
Findet dieses Semester nicht statt.
W4 KP2V + 1UT. Hofmann
KurzbeschreibungIntroduction to information retrieval with a focus on text documents and images. Main topics comprise extraction of characteristic features from documents, index structures, retrieval models, search algorithms, benchmarking, and feedback mechanisms. Searching the web, images and XML collections demonstrate recent applications of information retrieval and their implementation.
LernzielIn depth understanding of managing, indexing, and retrieving documents with text, image and XML content. Knowledge about basic search algorithms on the web, benchmarking of search algorithms, and relevance feedback methods.
263-2400-00LReliable and Interpretable Artificial Intelligence Information W4 KP2V + 1UM. Vechev
KurzbeschreibungCreating reliable and explainable probabilistic models is a major challenge to solving the artificial intelligence problem. This course covers some of the latest advances that bring us closer to constructing such models. These advances span the areas of program synthesis/induction, programming languages, machine learning, and probabilistic programming.
LernzielThe main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.
InhaltThe material draws on some of the latest research advances in several areas of computer science: program synthesis/induction, programming languages, deep learning, and probabilistic programming.

The material consists of three interconnected parts:

Part I: Program Synthesis/Induction
----------------------------------------

Synthesis is a new frontier in AI where the computer programs itself from user provided examples. Synthesis has significant applications for non-programmers as well as for programmers where it can provide massive productivity increase (e.g., wrangling for data scientists). Modern synthesis techniques excel at learning functions over discrete spaces from (partial) intent. There have been a number of recent, exciting breakthroughs in techniques that discover complex, interpretable/explainable functions from few examples, partial sketches and other forms of supervision.

Topics covered:

- Theory of program synthesis: version spaces, counter-example guided inductive synthesis (CEGIS) with SAT/SMT, synthesis from noisy examples, learning with few examples, compositional synthesis, lower bounds on learning.

- Applications of techniques: synthesis for end users (e.g., spreadsheets), data analytics and financial computing, interpretable machine learning models for structured data.

- Combining neural networks and synthesis

Part II: Robustness of Deep Learning
-----------------------------------------

Deep learning methods based on neural networks have made impressive advances in recent years. A fundamental challenge with these models is that of understanding what the trained neural network has actually learned, for example, how stable / robust the network is to slight variations of the input (e.g., an image or a video), how easy it is to fool the network into mis-classifying obvious inputs, etc.

Topics covered:

- Basics of neural networks: fully connected, convolutional networks, residual networks, activation functions

- Finding adversarial examples in deep learning with SMT

- Methods and tools to guarantee robustness of deep nets (e.g., via affine arithmetic, SMT solvers); synthesis of robustness specs


Part III: Probabilistic Programming
--------------------------------------

Probabilistic programming is an emerging direction whose goal is democratize the construction of probabilistic models. In probabilistic programming, the user specifies a model while inference is left to the underlying solver. The idea is that the higher level of abstraction makes it easier to express, understand and reason about probabilistic models.

Topics covered:

- Inference: MCMC samplers and tactics (approximate), symbolic inference (exact).

- Semantics: basic measure theoretic semantics of probability; bridging measure theory and symbolic inference.

- Frameworks and languages: WebPPL (MIT/Stanford), PSI (ETH), Picture/Venture (MIT), Anglican (Oxford).

- Synthesis for probabilistic programs: this connects to Part I

- Applications of probabilistic programming: using the above solvers for reasoning about bias in machine learning models (connects to Part II), reasoning about computer networks, security protocols, approximate computing, cognitive models, rational agents.
Seminar in Information Systems
NummerTitelTypECTSUmfangDozierende
263-3504-00LHardware Acceleration for Data Processing Information W2 KP2SG. Alonso, T. Hoefler, O. Mutlu, C. Zhang
KurzbeschreibungThe seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.
LernzielThe seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.
InhaltThe general application areas are big data and machine learning. The systems covered will include systems from computer architecture, high performance computing, data appliances, and data centers.
Voraussetzungen / BesonderesStudents taking this seminar should have the necessary background in systems and low level programming.
252-5051-00LAdvanced Topics in Machine Learning Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 40.
W2 KP2SJ. M. Buhmann, T. Hofmann, A. Krause, G. Rätsch
KurzbeschreibungIn this seminar, recent papers of the pattern recognition and machine learning literature are presented and discussed. Possible topics cover statistical models in computer vision, graphical models and machine learning.
LernzielThe seminar "Advanced Topics in Machine Learning" familiarizes students with recent developments in pattern recognition and machine learning. Original articles have to be presented and critically reviewed. The students will learn how to structure a scientific presentation in English which covers the key ideas of a scientific paper. An important goal of the seminar presentation is to summarize the essential ideas of the paper in sufficient depth while omitting details which are not essential for the understanding of the work. The presentation style will play an important role and should reach the level of professional scientific presentations.
InhaltThe seminar will cover a number of recent papers which have emerged as important contributions to the pattern recognition and machine learning literature. The topics will vary from year to year but they are centered on methodological issues in machine learning like new learning algorithms, ensemble methods or new statistical models for machine learning applications. Frequently, papers are selected from computer vision or bioinformatics - two fields, which relies more and more on machine learning methodology and statistical models.
LiteraturThe papers will be presented in the first session of the seminar.
Vertiefung in Software Engineering
Kernfächer der Vertiefung in Software Engineering
NummerTitelTypECTSUmfangDozierende
252-0237-00LConcepts of Object-Oriented Programming Information W6 KP3V + 2UP. Müller
KurzbeschreibungCourse that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection
LernzielAfter this course, students will:
Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features. Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs.
Be able to learn new languages more rapidly.
Be aware of many subtle problems of object-oriented programming and know how to avoid them.
InhaltThe main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages.

The topics discussed in the course include among others:
The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing)
The key problems of single and multiple inheritance and how different languages address them
Generic type systems, in particular, Java generics, C# generics, and C++ templates
The situations in which object-oriented programming does not provide encapsulation, and how to avoid them
The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing
How to maintain the consistency of data structures
LiteraturWill be announced in the lecture.
Voraussetzungen / BesonderesPrerequisites:
Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience
263-2800-00LDesign of Parallel and High-Performance Computing Information W7 KP3V + 2U + 1AT. Hoefler, M. Püschel
KurzbeschreibungAdvanced topics in parallel / concurrent programming.
LernzielUnderstand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large concurrent software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.
Wahlfächer der Vertiefung in Software Engineering
NummerTitelTypECTSUmfangDozierende
252-0286-00LSystem Construction Information W4 KP2V + 1UF. O. Friedrich
KurzbeschreibungMain goal is teaching knowledge and skills needed for building custom operating systems and runtime environments. Relevant topics are studied at the example of sufficiently simple systems that have been built at our Institute in the past, ranging from purpose-oriented single processor real-time systems up to generic system kernels on multi-core hardware.
LernzielThe lecture's main goal is teaching of knowledge and skills needed for building custom operating systems and runtime environments.

The lecture intends to supplement more abstract views of software construction, and to contribute to a better understanding of "how it really works" behind the scenes.
InhaltCase Study 1: Embedded System
- Safety-critical and fault-tolerant monitoring system
- Based on an auto-pilot system for helicopters

Case Study 2: Multi-Processor Operating System
- Universal operating system for symmetric multiprocessors
- Shared memory approach
- Based on Language-/System Codesign (Active Oberon / A2)

Case Study 3: Custom designed Single-Processor System
- RISC Single-processor system designed from scratch
- Hardware on FPGA
- Graphical workstation OS and compiler (Project Oberon)

Case Study 4: Custom-designed Multi-Processor System
- Special purpose heterogeneous system on a chip
- Masssively parallel hard- and software architecture based on message passing
- Focus: dataflow based applications
SkriptPrinted lecture notes will be delivered during the lecture. Slides will also be available from the lecture homepage.
263-2400-00LReliable and Interpretable Artificial Intelligence Information W4 KP2V + 1UM. Vechev
KurzbeschreibungCreating reliable and explainable probabilistic models is a major challenge to solving the artificial intelligence problem. This course covers some of the latest advances that bring us closer to constructing such models. These advances span the areas of program synthesis/induction, programming languages, machine learning, and probabilistic programming.
LernzielThe main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.
InhaltThe material draws on some of the latest research advances in several areas of computer science: program synthesis/induction, programming languages, deep learning, and probabilistic programming.

The material consists of three interconnected parts:

Part I: Program Synthesis/Induction
----------------------------------------

Synthesis is a new frontier in AI where the computer programs itself from user provided examples. Synthesis has significant applications for non-programmers as well as for programmers where it can provide massive productivity increase (e.g., wrangling for data scientists). Modern synthesis techniques excel at learning functions over discrete spaces from (partial) intent. There have been a number of recent, exciting breakthroughs in techniques that discover complex, interpretable/explainable functions from few examples, partial sketches and other forms of supervision.

Topics covered:

- Theory of program synthesis: version spaces, counter-example guided inductive synthesis (CEGIS) with SAT/SMT, synthesis from noisy examples, learning with few examples, compositional synthesis, lower bounds on learning.

- Applications of techniques: synthesis for end users (e.g., spreadsheets), data analytics and financial computing, interpretable machine learning models for structured data.

- Combining neural networks and synthesis

Part II: Robustness of Deep Learning
-----------------------------------------

Deep learning methods based on neural networks have made impressive advances in recent years. A fundamental challenge with these models is that of understanding what the trained neural network has actually learned, for example, how stable / robust the network is to slight variations of the input (e.g., an image or a video), how easy it is to fool the network into mis-classifying obvious inputs, etc.

Topics covered:

- Basics of neural networks: fully connected, convolutional networks, residual networks, activation functions

- Finding adversarial examples in deep learning with SMT

- Methods and tools to guarantee robustness of deep nets (e.g., via affine arithmetic, SMT solvers); synthesis of robustness specs


Part III: Probabilistic Programming
--------------------------------------

Probabilistic programming is an emerging direction whose goal is democratize the construction of probabilistic models. In probabilistic programming, the user specifies a model while inference is left to the underlying solver. The idea is that the higher level of abstraction makes it easier to express, understand and reason about probabilistic models.

Topics covered:

- Inference: MCMC samplers and tactics (approximate), symbolic inference (exact).

- Semantics: basic measure theoretic semantics of probability; bridging measure theory and symbolic inference.

- Frameworks and languages: WebPPL (MIT/Stanford), PSI (ETH), Picture/Venture (MIT), Anglican (Oxford).

- Synthesis for probabilistic programs: this connects to Part I

- Applications of probabilistic programming: using the above solvers for reasoning about bias in machine learning models (connects to Part II), reasoning about computer networks, security protocols, approximate computing, cognitive models, rational agents.
263-2810-00LAdvanced Compiler Design Information W7 KP3V + 2U + 1AR. Eigenmann, T. Gross
KurzbeschreibungThis course covers advanced topics in compiler design: SSA intermediate representation and its use in optimization, just-in-time compilation, profile-based compilation, exception handling in modern programming languages.
LernzielUnderstand translation of object-oriented programs, opportunities and difficulties in optimizing programs using state-of-the-art techniques (profile-based compilation, just-in-time compilation, runtime system interaction)
InhaltThis course builds conceptually on Compiler Design (a basic class for advanced undergraduates), but this class is not a prerequisite. Students should however have a solid understanding of basic compiler technology.

The focus is on handling the key features of modern object-oriented programs. We review implementations of single and multiple inheritance (incl. object layout, method dispatch) and optimization opportunities.

Specific topics: intermediate representations (IR) for optimizing compilers, static single assignment (SSA) representation, constant folding, partial redundancy optimizations, profiling, profile-guided code generation. Special topics as time permits: debugging optimized code, multi-threading, data races, object races, memory consistency models, programming language design. Review of single inheritance, multiple inheritance, object layout, method dispatch, type analysis, type propagation and related topics.

This course provides another opportunity to explore software design in a medium-scale software project.
LiteraturAho/Lam/Sethi/Ullmann, Compilers - Principles, Techniques, and Tools (2nd Edition). In addition, papers as provided in the class.
Voraussetzungen / BesonderesA basic course on compiler design is helpful but not mandatory. Student should have programming skills/experience to implement an optimizer (or significant parts of an optimizer) for a simple object-oriented language. The programming project is implemented using Java.
263-4630-00LComputer-Aided Modelling and Reasoning Information
In the Master Programme max. 10 credits can be accounted by Labs on top of the Interfocus Courses. Additional Labs will be listed on the Addendum.
W8 KP7PA. Lochbihler, D. Traytel
KurzbeschreibungThe "computer-aided modelling and reasoning" lab is a hands-on course about using an interactive theorem prover to construct formal models of algorithms, protocols, and programming languages and to reason about their properties. The lab has two parts: The first introduces various modelling and proof techniques. The second part consists of a project in which the students apply these techniques
LernzielThe students learn to effectively use a theorem prover to create unambiguous models and rigorously analyse them. They learn how to write precise and concise specifications, to exploit the theorem prover as a tool for checking and analysing such models and for taming their complexity, and to extract certified executable implementations from such specifications.
InhaltThe "computer-aided modelling and reasoning" lab is a hands-on course about using an interactive theorem prover to construct formal models of algorithms, protocols, and programming languages and to reason about their properties. The focus is on applying logical methods to concrete problems supported by a theorem prover. The course will demonstrate the challenges of formal rigor, but also the benefits of machine support in modelling, proving and validating.

The lab will have two parts: The first part introduces basic and advanced modelling techniques (functional programs, inductive definitions, modules), the associated proof techniques (term rewriting, resolution, induction, proof automation), and compilation of the models to certified executable code. In the second part, the students work in teams of two on a project assignment in which they apply these techniques: they build a formal model and prove its desired properties. The project lies in the area of programming languages, model checking, or information security.
LiteraturTextbook: Tobias Nipkow, Gerwin Klein. Concrete Semantics, part 1 (www.concrete-semantics.org)
  • Erste Seite Vorherige Seite Seite  2  von  6 Nächste Seite Letzte Seite     Alle