Suchergebnis: Katalogdaten im Herbstsemester 2018

Rechnergestützte Wissenschaften Bachelor Information
Bachelor-Studium (Studienreglement 2012 und 2016)
Grundlagenfächer
Block G2
NummerTitelTypECTSUmfangDozierende
401-0647-00LIntroduction to Mathematical OptimizationO5 KP2V + 1UD. Adjiashvili
KurzbeschreibungIntroduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering.
LernzielThe goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.
InhaltTopics covered in this course include:
- Linear programming (simplex method, duality theory, shadow prices, ...).
- Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...).
- Modelling with mathematical optimization: applications of mathematical programming in engineering.
LiteraturInformation about relevant literature will be given in the lecture.
Voraussetzungen / BesonderesThis course is meant for students who did not already attend the course "Mathematical Optimization", which is a more advance lecture covering similar topics. Compared to "Mathematical Optimization", this course has a stronger focus on modeling and applications.
Block G3
Die Lehrveranstaltungen von Block G3 finden im Frühjahrssemester statt.
Block G4
Studierende, die aus einem anderen ETH-Studiengang in das zweite Studienjahr des Bachelor-Studiengangs RW übergetreten sind und deren Basisprüfung das Fach "Physik I" nicht umfasst, müssen im Prüfungsblock G4 anstelle von "Physik II" (im Frühjahrssemester) den Jahreskurs "Physik I und II" (402-0043-00L und 402-0044-00L) aus dem Bachelor-Studiengang Chemie belegen und die entsprechende Prüfung ablegen.
NummerTitelTypECTSUmfangDozierende
402-0043-00LPhysik IW4 KP3V + 1UJ. Home
KurzbeschreibungEinführung in die Denk- und Arbeitsweise in der Physik unter Zuhilfenahme von Demonstrationsexperimenten: Mechanik von Massenpunkten und starren Körpern, Schwingungen und Wellen.
LernzielVermittlung der physikalischen Denk- und Arbeitsweise und Einführung in die Methoden in einer experimentellen Wissenschaft. Die Studenten und Studentinnen soll lernen, physikalische Fragestellungen im eigenen Wissenschaftsbereich zu identifizieren, zu kommunizieren und zu lösen.
InhaltMechanik (Bewegung, Newtonsche Axiome, Arbeit und Energie, Impulserhaltung, Drehbewegungen, Gravitation, deformierbare Körper)
Schwingungen und Wellen (Schwingungen, mechanische Wellen, Akustik)
SkriptDie Vorlesung richtet sich nach dem Lehrbuch "Physik" von Paul A. Tipler.
LiteraturTipler, Paul A., Mosca, Gene, Physik (für Wissenschaftler und Ingenieure), Springer Spektrum
Kernfächer
NummerTitelTypECTSUmfangDozierende
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IO4 KP4GP. Koumoutsakos
KurzbeschreibungThis course gives an introduction into algorithms and numerical methods for parallel computing for multi and many-core architectures and for applications from problems in science and engineering.
LernzielIntroduction to HPC for scientists and engineers
Fundamental of:
1. Parallel Computing Architectures
2. MultiCores
3. ManyCores
InhaltParallel Programming models and languages (OpenMP, MPI). Parallel Performance metrics and Code Optimization. Examples based on grid and particle methods for solving Partial Differential Equations and on fundamentals of stochastic optimisation and machine learning.
SkriptLink
Class notes, handouts
Bachelor-Arbeit
Wenn Sie anstelle von 401-2000-00L Scientific Works in Mathematics die Lerneinheit 402-2000-00L Scientific Works in Physics anrechnen lassen möchten (dies ist erlaubt im Studiengang Rechnergestützte Wissenschaften), so wenden Sie sich nach dem Verfügen des Resultates an das Studiensekretariat (Link).
NummerTitelTypECTSUmfangDozierende
401-2000-00LScientific Works in Mathematics
Zielpublikum:
Bachelor-Studierende im dritten Jahr;
Master-Studierende, welche noch keine entsprechende Ausbildung vorweisen können.
O0 KPE. Kowalski
KurzbeschreibungIntroduction to scientific writing for students with focus on publication standards and ethical issues, especially in the case of citations (references to works of others.)
LernzielLearn the basic standards of scientific works in mathematics.
Inhalt- Types of mathematical works
- Publication standards in pure and applied mathematics
- Data handling
- Ethical issues
- Citation guidelines
SkriptMoodle of the Mathematics Library: Link
Voraussetzungen / BesonderesWeisung Link
401-2000-01LRecherchieren in der Mathematik [wird überarbeitet]
Für Details und zur Registrierung für den freiwilligen MathBib-Schulungskurs: Link
Z0 KPReferent/innen
KurzbeschreibungFreiwilliger Kurs "Recherchieren in der Mathematik" angeboten von der Mathematikbibliothek.
Lernziel
402-2000-00LScientific Works in Physics
Zielpublikum:
Master-Studierende, welche noch keine entsprechende Ausbildung vorweisen können.

Weisung Link
W0 KPC. Grab
KurzbeschreibungLiterature Review: ETH-Library, Journals in Physics, Google Scholar; Thesis Structure: The IMRAD Model; Document Processing: LaTeX and BibTeX, Mathematical Writing, AVETH Survival Guide; ETH Guidelines for Integrity; Authorship Guidelines; ETH Citation Etiquettes; Declaration of Originality.
LernzielBasic standards for scientific works in physics: How to write a Master Thesis. What to know about research integrity.
401-3990-01LBachelor-Arbeit Belegung eingeschränkt - Details anzeigen
Nur für Rechnergestützte Wissenschaften BSc, Studienreglement 2012 und 2016.

Voraussetzung: erfolgreicher Abschluss der Lerneinheit 401-2000-00L Scientific Works in Mathematics oder 402-2000-00L Scientific Works in Physics
Weitere Angaben unter Link
O8 KP11DBetreuer/innen
KurzbeschreibungDie Bachelor-Arbeit bildet den Abschluss des Studiengangs. Sie soll einerseits dazu dienen, das Wissen in einem bestimmten Fachgebiet zu vertiefen sowie in einen ersten Kontakt mit Anwendungen zu kommen und Probleme aus solchen Anwendungen in einer bestehenden wissenschaftlichen Gruppe rechnergestützt anzugehen. Die Bachelor-Arbeit umfasst ca. 160 Stunden.
LernzielDie Bachelorarbeit soll einerseits dazu dienen, das Wissen in einem bestimmten Fachgebiet zu vertiefen sowie in einen ersten Kontakt mit Anwendungen zu kommen und Probleme aus solchen Anwendungen rechnergestützt anzugehen. Andererseits soll auch gelernt werden, in einer bestehenden wissenschaftlichen Gruppe mitzuarbeiten.
Voraussetzungen / BesonderesDer verantwortliche Leiter der Bachelorarbeit definiert die Aufgabenstellung und legt den Beginn der Bachelorarbeit und den Abgabetermin fest. Die Bachelorarbeit wird mit einem schriftlichen Bericht abgeschlossen. Die Leistung wird mit einer Note bewertet.
Für alle Studienreglemente
Vertiefungsgebiete
Astrophysik
NummerTitelTypECTSUmfangDozierende
401-7851-00LTheoretical Astrophysics (University of Zurich) Information
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: AST512

Beachten Sie die Einschreibungstermine an der UZH: Link
W10 KP4V + 2UR. Teyssier
KurzbeschreibungThis course covers the foundations of astrophysical fluid dynamics, the Boltzmann equation, equilibrium systems and their stability, the structure of stars, astrophysical turbulence, accretion disks and their stability, the foundations of radiative transfer, collisionless systems, the structure and stability of dark matter halos and galactic disks.
Lernziel
LiteraturCourse Materials:
1- The Physics of Astrophysics, Volume 1: Radiation by Frank H. Shu
2- The Physics of Astrophysics, Volume 2: Gas Dynamics by Frank H. Shu
3- Foundations of radiation hydrodynamics, Dimitri Mihalas and Barbara Weibel-Mihalas
4- Radiative Processes in Astrophysics, George B. Rybicki and Alan P. Lightman
5- Galactic Dynamics, James Binney and Scott Tremaine
Voraussetzungen / BesonderesPrerequisites:
Introduction to Astrophysics
Mathematical Methods for the Physicist
Quantum Mechanics
(All preferred but not obligatory)

Prior Knowledge:
Mechanics
Quantum Mechanics and atomic physics
Thermodynamics
Fluid Dynamics
Electrodynamics
401-7855-00LComputational Astrophysics (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: AST245

Beachten Sie die Einschreibungstermine an der UZH: Link
W6 KP2VL. M. Mayer
Kurzbeschreibung
LernzielAcquire knowledge of main methodologies for computer-based models of astrophysical systems,the physical equations behind them, and train such knowledge with simple examples of computer programmes
Inhalt1. Integration of ODE, Hamiltonians and Symplectic integration techniques, time adaptivity, time reversibility
2. Large-N gravity calculation, collisionless N-body systems and their simulation
3. Fast Fourier Transform and spectral methods in general
4. Eulerian Hydrodynamics: Upwinding, Riemann solvers, Limiters
5. Lagrangian Hydrodynamics: The SPH method
6. Resolution and instabilities in Hydrodynamics
7. Initial Conditions: Cosmological Simulations and Astrophysical Disks
8. Physical Approximations and Methods for Radiative Transfer in Astrophysics
LiteraturGalactic Dynamics (Binney & Tremaine, Princeton University Press),
Computer Simulation using Particles (Hockney & Eastwood CRC press),
Targeted journal reviews on computational methods for astrophysical fluids (SPH, AMR, moving mesh)
Voraussetzungen / BesonderesSome knowledge of UNIX, scripting languages (see Link as an example), some prior experience programming, knowledge of C, C++ beneficial
Atmosphärenphysik
NummerTitelTypECTSUmfangDozierende
701-0023-00LAtmosphäre Information W3 KP2VE. Fischer, T. Peter
KurzbeschreibungGrundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht.
LernzielVerständnis grundlegender physikalischer und chemischer Prozesse in der Atmosphäre. Kenntnis über die Mechanismen und Zusammenhänge von: Wetter - Klima, Atmosphäre - Ozeane - Kontinente, Troposphäre - Stratosphäre. Verständnis von umweltrelevanten Strukturen und Vorgängen in sehr unterschiedlichem Massstab. Grundlagen für eine modellmässige Darstellung komplexer Zusammenhänge in der Atmosphäre.
InhaltGrundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht.
SkriptSchriftliche Unterlagen werden abgegeben.
Literatur- John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
- Gösta H. Liljequist, Allgemeine Meteorologie, Vieweg, Braunschweig, 1974.
Chemie
NummerTitelTypECTSUmfangDozierende
529-0004-01LComputer Simulation in Chemistry, Biology and Physics Information W6 KP4GP. H. Hünenberger
KurzbeschreibungMolecular models, Force fields, Boundary conditions, Electrostatic interactions, Molecular dynamics, Analysis of trajectories, Quantum-mechanical simulation, Structure refinement, Application to real systems. Exercises: Analysis of papers on computer simulation, Molecular simulation in practice, Validation of molecular dynamics simulation.
LernzielIntroduction to computer simulation of (bio)molecular systems, development of skills to carry out and interpret computer simulations of biomolecular systems.
InhaltMolecular models, Force fields, Spatial boundary conditions, Calculation of Coulomb forces, Molecular dynamics, Analysis of trajectories, Quantum-mechanical simulation, Structure refinement, Application to real systems. Exercises: Analysis of papers on computer simulation, Molecular simulation in practice, Validation of molecular dynamics simulation.
SkriptAvailable (copies of powerpoint slides distributed before each lecture)
LiteraturSee: Link
Voraussetzungen / BesonderesSince the exercises on the computer do convey and test essentially different skills as those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam (learning component, possible bonus of up to 0.25 points on the exam mark).

For more information about the lecture: Link
Fluiddynamik
NummerTitelTypECTSUmfangDozierende
151-0103-00LFluiddynamik IIW3 KP2V + 1UP. Jenny
KurzbeschreibungEbene Potentialströmungen: Stromfunktion und Potential, Singularitätenmethode, instationäre Strömung, aerodynamische Begriffe.
Drehungsbehaftete Strömungen: Wirbelstärke und Zirkulation, Wirbeltransportgleichung, Wirbelsätze von Helmholtz und Kelvin.
Kompressible Strömungen: Stromfadentheorie, senkrechter und schiefer Verdichtungsstoss, Laval-Düse, Prandtl-Meyer-Expansion, Reibungseinfluss.
LernzielErweiterung der Grundlagen der Fluiddynamik.
Grundbegriffe, Phänomene und Gesetzmässigkeiten von drehungsfreien, drehungsbehafteten und eindimensionalen kompressiblen Strömungen vermitteln.
InhaltEbene Potentialströmungen: Stromfunktion und Potential, komplexe Darstellung, Singularitätenmethode, instationäre Strömung, aerodynamische Begriffe.
Drehungsbehaftete Strömungen: Wirbelstärke und Zirkulation, Wirbeldynamik und Wirbeltransportgleichung, Wirbelsätze von Helmholtz und Kelvin.
Kompressible Strömungen: Stromfadentheorie, senkrechter und schiefer Verdichtungsstoss, Laval-Düse, Prandtl-Meyer-Expansion, Reibungseinfluss.
Skriptja
(Siehe auch untenstehende Information betreffend der Literatur.)
LiteraturP.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 5th ed., 2011 (includes a free copy of the DVD "Multimedia Fluid Mechanics")

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 6th ed., 2015 (does NOT include a free copy of the DVD "Multimedia Fluid Mechanics")
Voraussetzungen / BesonderesAnalysis I/II, Fluiddynamik I, Grundbegriffe der Thermodynamik (Thermodynamik I).

Für die Formulierung der Grundlagen der Fluiddynamik werden unabdingbar Begriffe und Ergebnisse aus der Mathematik benötigt. Erfahrungsgemäss haben einige Studierende damit Schwierigkeiten.
Es wird daher dringend empfohlen, insbesondere den Stoff über
- elementare Funktionen (wie sin, cos, tan, exp, deren Umkehrfunktionen, Ableitungen und Integrale) sowie über
- Vektoranalysis (Gradient, Divergenz, Rotation, Linienintegral ("Arbeit"), Integralsätze von Gauss und von Stokes, Potentialfelder als Lösungen der Laplace-Gleichung) zu wiederholen. Ferner wird der Umgang mit
- komplexen Zahlen und Funktionen (siehe Anhang des Skripts Analysis I/II Teil C und Zusammenfassung im Anhang C des Skripts Fluiddynamik) benötigt.

Literatur z.B.: U. Stammbach: Analysis I/II, Skript Teile A, B und C.
Systems and Control
NummerTitelTypECTSUmfangDozierende
227-0103-00LRegelsysteme Information W6 KP2V + 2UF. Dörfler
KurzbeschreibungStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
LernzielStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
InhaltProcess automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation.
LiteraturK. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010.
R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007.
G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010.
J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014.
J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014.
Voraussetzungen / BesonderesPrerequisites: Signal and Systems Theory II.

MATLAB is used for system analysis and simulation.
227-0045-00LSignal- und Systemtheorie IW4 KP2V + 2UH. Bölcskei
KurzbeschreibungSignaltheorie und Systemtheorie (zeitkontinuierlich und zeitdiskret): Signalanalyse im Zeit- und Frequenzbereich, Signalräume, Hilberträume, verallgemeinerte Funktionen, lineare zeitinvariante Systeme, Abtasttheoreme, zeitdiskrete Signale und Systeme, digitale Filterstrukturen, diskrete Fourier-Transformation (DFT), endlich-dimensionale Signale und Systeme, schnelle Fouriertransformation (FFT).
LernzielEinführung in die mathematische Signaltheorie und Systemtheorie.
InhaltSignaltheorie und Systemtheorie (zeitkontinuierlich und zeitdiskret): Signalanalyse im Zeit- und Frequenzbereich, Signalräume, Hilberträume, verallgemeinerte Funktionen, lineare zeitinvariante Systeme, Abtasttheoreme, zeitdiskrete Signale und Systeme, digitale Filterstrukturen, diskrete Fourier-Transformation (DFT), endlich-dimensionale Signale und Systeme, schnelle Fouriertransformation (FFT).
SkriptVorlesungsskriptum, Übungsskriptum mit Lösungen.
Robotik
NummerTitelTypECTSUmfangDozierende
151-0601-00LTheory of Robotics and Mechatronics Information W4 KP3GP. Korba, S. Stoeter
KurzbeschreibungThis course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. It’s a requirement for the Robotics Vertiefung and for the Masters in Mechatronics and Microsystems.
LernzielRobotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. This course is a requirement for the Robotics Vertiefung and for the Masters in Mechatronics and Microsystems.
InhaltAn introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.
Skriptavailable.
252-0535-00LAdvanced Machine Learning Information W8 KP3V + 2U + 2AJ. M. Buhmann
KurzbeschreibungMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
LernzielStudents will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
InhaltThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
What is data?
Bayesian Learning
Computational learning theory

Supervised learning:
Ensembles: Bagging and Boosting
Max Margin methods
Neural networks

Unsupservised learning:
Dimensionality reduction techniques
Clustering
Mixture Models
Non-parametric density estimation
Learning Dynamical Systems
SkriptNo lecture notes, but slides will be made available on the course webpage.
LiteraturC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Voraussetzungen / BesonderesThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.
263-3210-00LDeep Learning Information Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 300
W4 KP2V + 1UF. Perez Cruz
KurzbeschreibungDeep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.
LernzielIn recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.
Voraussetzungen / BesonderesThis is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following conditions:
1) The number of participants is limited to 300 students (MSc and PhDs).
2) Students must have taken the exam in Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

Machine Learning
Link

Computational Intelligence Lab
Link

Learning and Intelligent Systems/Introduction to Machine Learning
Link

Statistical Learning Theory
Link

Computational Statistics
Link

Probabilistic Artificial Intelligence
Link

Data Mining: Learning from Large Data Sets
Link
263-5902-00LComputer Vision Information W6 KP3V + 1U + 1AM. Pollefeys, V. Ferrari, L. Van Gool
KurzbeschreibungThe goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.
LernzielThe objectives of this course are:
1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.
InhaltCamera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition
Voraussetzungen / BesonderesIt is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.
151-0563-01LDynamic Programming and Optimal Control Information W4 KP2V + 1UR. D'Andrea
KurzbeschreibungIntroduction to Dynamic Programming and Optimal Control.
LernzielCovers the fundamental concepts of Dynamic Programming & Optimal Control.
InhaltDynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.
LiteraturDynamic Programming and Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.
Voraussetzungen / BesonderesRequirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.
151-0851-00LRobot Dynamics Information Belegung eingeschränkt - Details anzeigen W4 KP2V + 2UM. Hutter, R. Siegwart
KurzbeschreibungWe will provide an overview on how to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing.
LernzielThe primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems.
InhaltThe course consists of three parts: First, we will refresh and deepen the student's knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will build upon the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics.
Voraussetzungen / BesonderesThe contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics.
  • Erste Seite Vorherige Seite Seite  2  von  5 Nächste Seite Letzte Seite     Alle