Suchergebnis: Katalogdaten im Frühjahrssemester 2020

Informatik Master Information
Vertiefungsfächer
Vertiefung General Studies
Wahlfächer der Vertiefung General Studies
NummerTitelTypECTSUmfangDozierende
272-0302-00LApproximations- und Online-Algorithmen Information W5 KP2V + 1U + 1AH.‑J. Böckenhauer, D. Komm
KurzbeschreibungDiese Lerneinheit behandelt approximative Verfahren für schwere Optimierungsprobleme und algorithmische Ansätze zur Lösung von Online-Problemen sowie die Grenzen dieser Ansätze.
LernzielAuf systematische Weise einen Überblick über die verschiedenen Entwurfsmethoden von approximativen Verfahren für schwere Optimierungsprobleme und Online-Probleme zu gewinnen. Methoden kennenlernen, die Grenzen dieser Ansätze aufweisen.
InhaltApproximationsalgorithmen sind einer der erfolgreichsten Ansätze zur Behandlung schwerer Optimierungsprobleme. Dabei untersucht man die sogenannte Approximationsgüte, also das Verhältnis der Kosten einer berechneten Näherungslösung und der Kosten einer (nicht effizient berechenbaren) optimalen Lösung.
Bei einem Online-Problem ist nicht die gesamte Eingabe von Anfang an bekannt, sondern sie erscheint stückweise und für jeden Teil der Eingabe muss sofort ein entsprechender Teil der endgültigen Ausgabe produziert werden. Die Güte eines Algorithmus für ein Online-Problem misst man mit der competitive ratio, also dem Verhältnis der Kosten der berechneten Lösung und der Kosten einer optimalen Lösung, wie man sie berechnen könnte, wenn die gesamte Eingabe bekannt wäre.

Inhalt dieser Lerneinheit sind
- die Klassifizierung von Optimierungsproblemen nach der erreichbaren Approximationsgüte,
- systematische Methoden zum Entwurf von Approximationsalgorithmen (z. B. Greedy-Strategien, dynamische Programmierung, LP-Relaxierung),
- Methoden zum Nachweis der Nichtapproximierbarkeit,
- klassische Online-Probleme wie Paging oder Scheduling-Probleme und Algorithmen zu ihrer Lösung,
- randomisierte Online-Algorithmen,
- Entwurfs- und Analyseverfahren für Online-Algorithmen,
- Grenzen des "competitive ratio"- Modells und Advice-Komplexität als eine Möglichkeit, die Komplexität von Online-Problemen genauer zu messen.
LiteraturDie Vorlesung orientiert sich teilweise an folgenden Büchern:

J. Hromkovic: Algorithmics for Hard Problems, Springer, 2004

D. Komm: An Introduction to Online Computation: Determinism, Randomization, Advice, Springer, 2016

Zusätzliche Literatur:

A. Borodin, R. El-Yaniv: Online Computation and Competitive Analysis, Cambridge University Press, 1998
401-3052-05LGraph Theory Information W5 KP2V + 1UB. Sudakov
KurzbeschreibungBasic notions, trees, spanning trees, Caley's formula, vertex and edge connectivity, 2-connectivity, Mader's theorem, Menger's theorem, Eulerian graphs, Hamilton cycles, Dirac's theorem, matchings, theorems of Hall, König and Tutte, planar graphs, Euler's formula, basic non-planar graphs, graph colorings, greedy colorings, Brooks' theorem, 5-colorings of planar graphs
LernzielThe students will get an overview over the most fundamental questions concerning graph theory. We expect them to understand the proof techniques and to use them autonomously on related problems.
SkriptLecture will be only at the blackboard.
LiteraturWest, D.: "Introduction to Graph Theory"
Diestel, R.: "Graph Theory"

Further literature links will be provided in the lecture.
Voraussetzungen / BesonderesStudents are expected to have a mathematical background and should be able to write rigorous proofs.


NOTICE: This course unit was previously offered as 252-1408-00L Graphs and Algorithms.
401-3903-11LGeometric Integer ProgrammingW6 KP2V + 1UJ. Paat
KurzbeschreibungInteger programming is the task of minimizing a linear function over all the integer points in a polyhedron. This lecture introduces the key concepts of an algorithmic theory for solving such problems.
LernzielThe purpose of the lecture is to provide a geometric treatment of the theory of integer optimization.
InhaltKey topics are:

- Lattice theory and the polynomial time solvability of integer optimization problems in fixed dimension.

- Structural properties of integer sets that reveal other parameters affecting the complexity of integer problems

- Duality theory for integer optimization problems from the vantage point of lattice free sets.
Skriptnot available, blackboard presentation
LiteraturLecture notes will be provided.

Other helpful materials include

Bertsimas, Weismantel: Optimization over Integers, 2005

and

Schrijver: Theory of linear and integer programming, 1986.
Voraussetzungen / Besonderes"Mathematical Optimization" (401-3901-00L)
227-0560-00LDeep Learning for Autonomous Driving Information Belegung eingeschränkt - Details anzeigen
Registration in this class requires the permission of the instructors. Class size will be limited to 80 students.
Preference is given to EEIT, INF and RSC students.
W6 KP3V + 2PD. Dai, A. Liniger
KurzbeschreibungAutonomous driving has moved from the realm of science fiction to a very real possibility during the past twenty years, largely due to rapid developments of deep learning approaches, automotive sensors, and microprocessor capacity. This course covers the core techniques required for building a self-driving car, especially the practical use of deep learning through this theme.
LernzielStudents will learn about the fundamental aspects of a self-driving car. They will also learn to use modern automotive sensors and HD navigational maps, and to implement, train and debug their own deep neural networks in order to gain a deep understanding of cutting-edge research in autonomous driving tasks, including perception, localization and control.

After attending this course, students will:
1) understand the core technologies of building a self-driving car;
2) have a good overview over the current state of the art in self-driving cars;
3) be able to critically analyze and evaluate current research in this area;
4) be able to implement basic systems for multiple autonomous driving tasks.
InhaltWe will focus on teaching the following topics centered on autonomous driving: deep learning, automotive sensors, multimodal driving datasets, road scene perception, ego-vehicle localization, path planning, and control.

The course covers the following main areas:

I) Foundation
a) Fundamentals of a self-driving car
b) Fundamentals of deep-learning


II) Perception
a) Semantic segmentation and lane detection
b) Depth estimation with images and sparse LiDAR data
c) 3D object detection with images and LiDAR data
d) Object tracking and motion prediction

III) Localization
a) GPS-based and Vision-based Localization
b) Visual Odometry and Lidar Odometry

IV) Path Planning and Control
a) Path planning for autonomous driving
b) Motion planning and vehicle control
c) Imitation learning and reinforcement learning for self driving cars

The exercise projects will involve training complex neural networks and applying them on real-world, multimodal driving datasets. In particular, students should be able to develop systems that deal with the following problems:
- Sensor calibration and synchronization to obtain multimodal driving data;
- Semantic segmentation and depth estimation with deep neural networks ;
- Learning to drive with images and map data directly (a.k.a. end-to-end driving)
SkriptThe lecture slides will be provided as a PDF.
Voraussetzungen / BesonderesThis is an advanced grad-level course. Students must have taken courses on machine learning and computer vision or have acquired equivalent knowledge. Students are expected to have a solid mathematical foundation, in particular in linear algebra, multivariate calculus, and probability. All practical exercises will require basic knowledge of Python and will use libraries such as PyTorch, scikit-learn and scikit-image.
227-1034-00LComputational Vision (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: INI402

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html
W6 KP2V + 1UD. Kiper
KurzbeschreibungThis course focuses on neural computations that underlie visual perception. We study how visual signals are processed in the retina, LGN and visual cortex. We study the morpholgy and functional architecture of cortical circuits responsible for pattern, motion, color, and three-dimensional vision.
LernzielThis course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed.
The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will
be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered.
InhaltThis course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed.
The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will
be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered.
LiteraturBooks: (recommended references, not required)
1. An Introduction to Natural Computation, D. Ballard (Bradford Books, MIT Press) 1997.
2. The Handbook of Brain Theorie and Neural Networks, M. Arbib (editor), (MIT Press) 1995.
  • Erste Seite Vorherige Seite Seite  2  von  2     Alle