Suchergebnis: Katalogdaten im Herbstsemester 2020

Informatik Master Information
Master-Studium (Studienreglement 2020)
Vertiefung in Secure and Reliable Systems
263-2800-00LDesign of Parallel and High-Performance Computing Information W9 KP3V + 2U + 3AT. Hoefler, M. Püschel
KurzbeschreibungAdvanced topics in parallel and high-performance computing.
LernzielUnderstand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.
InhaltWe will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.
Voraussetzungen / BesonderesThis class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallele Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.
263-4640-00LNetwork Security Information W8 KP2V + 2U + 3AA. Perrig, S. Frei, M. Legner
KurzbeschreibungSome of today's most damaging attacks on computer systems involve
exploitation of network infrastructure, either as the target of attack
or as a vehicle to attack end systems. This course provides an
in-depth study of network attack techniques and methods to defend
against them.
Lernziel- Students are familiar with fundamental network security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess known vulnerabilities in a software system that is connected to the Internet (through analysis and penetration testing tools).
- Students have an in-depth understanding of a range of important security technologies.
- Students learn how formal analysis techniques can help in the design of secure networked systems.
InhaltThe course will cover topics spanning five broad themes: (1) network
defense mechanisms such as secure routing protocols, TLS, anonymous
communication systems, network intrusion detection systems, and
public-key infrastructures; (2) network attacks such as denial of
service (DoS) and distributed denial-of-service (DDoS) attacks; (3)
analysis and inference topics such as network forensics and attack
economics; (4) formal analysis techniques for verifying the security
properties of network architectures; and (5) new technologies related
to next-generation networks.
Voraussetzungen / BesonderesThis lecture is intended for students with an interest in securing
Internet communication services and network devices. Students are
assumed to have knowledge in networking as taught in a Communication
Networks lecture. The course will involve a course project and some
smaller programming projects as part of the homework. Students are
expected to have basic knowledge in network programming in a
programming language such as C/C++, Go, or Python.
252-1411-00LSecurity of Wireless Networks Information W6 KP2V + 1U + 2AS. Capkun, K. Kostiainen
KurzbeschreibungCore Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques.
LernzielAfter this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure
802.11 networks.
InhaltWireless channel basics. Wireless electronic warfare: jamming and target tracking. Basic security protocols in cellular, WLAN and
multi-hop networks. Recent advances in security of multi-hop networks; RFID privacy challenges and solutions.
263-2400-00LReliable and Interpretable Artificial Intelligence Information W6 KP2V + 2U + 1AM. Vechev
KurzbeschreibungCreating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models.
LernzielThe main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.

To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material.
InhaltThe course covers some of the latest research (over the last 2-3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here:

* Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution)
* Defenses against attacks
* Combining gradient-based optimization with logic for encoding background knowledge
* Complete Certification of deep neural networks via automated reasoning (e.g., via numerical abstractions, mixed-integer solvers).
* Probabilistic certification of deep neural networks
* Training deep neural networks to be provably robust via automated reasoning
* Understanding and Interpreting Deep Networks
* Probabilistic Programming
Voraussetzungen / BesonderesWhile not a formal requirement, the course assumes familiarity with basics of machine learning (especially probability theory, linear algebra, gradient descent, and neural networks). These topics are usually covered in “Intro to ML” classes at most institutions (e.g., “Introduction to Machine Learning” at ETH).

For solving assignments, some programming experience in Python is excepted.
227-0579-00LHardware Security Belegung eingeschränkt - Details anzeigen W6 KP4GK. Razavi
KurzbeschreibungThis course covers the security of commodity computer hardware (e.g., CPU, DRAM, etc.) with a special focus on cutting-edge hands-on research. The aim of the course is familiarizing the students with hardware security and more specifically microarchitectural and circuit-level attacks and defenses through lectures, reviewing and discussing papers, and executing some of these advanced attacks.
LernzielBy the end of the course, the students will be familiar with the state of the art in commodity computer hardware attacks and defenses. More specifically, the students will learn about:

- security problems of commodity hardware that we use everyday and how you can defend against them.
- relevant computer architecture and operating system aspects of these issues.
- hands-on techniques for performing hardware attacks.
- writing critical reviews and constructive discussions with peers on this topic.

This is the course where you get credit points by building some of the most advanced exploits on the planet! The luckiest team will collect a Best Demo Award at the end of the course.
LiteraturSlides, relevant literature and manuals will be made available during the course.
Voraussetzungen / BesonderesKnowledge of systems programming and computer architecture is a plus.
Vertiefung in Theoretical Computer Science
252-0417-00LRandomized Algorithms and Probabilistic Methods Information
Findet dieses Semester nicht statt.
W10 KP3V + 2U + 4AA. Steger
KurzbeschreibungLas Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks
LernzielAfter this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.
InhaltRandomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.
Literatur- Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan, Cambridge University Press (1995)
- Probability and Computing, Michael Mitzenmacher and Eli Upfal, Cambridge University Press (2005)
252-0535-00LAdvanced Machine Learning Information W10 KP3V + 2U + 4AJ. M. Buhmann, C. Cotrini Jimenez
KurzbeschreibungMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
LernzielStudents will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
InhaltThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

What is data?
Bayesian Learning
Computational learning theory

Supervised learning:
Ensembles: Bagging and Boosting
Max Margin methods
Neural networks

Unsupservised learning:
Dimensionality reduction techniques
Mixture Models
Non-parametric density estimation
Learning Dynamical Systems
SkriptNo lecture notes, but slides will be made available on the course webpage.
LiteraturC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Voraussetzungen / BesonderesThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.
252-1425-00LGeometry: Combinatorics and Algorithms Information W8 KP3V + 2U + 2AB. Gärtner, E. Welzl, M. Hoffmann, M. Wettstein
KurzbeschreibungGeometric structures are useful in many areas, and there is a need to understand their structural properties, and to work with them algorithmically. The lecture addresses theoretical foundations concerning geometric structures. Central objects of interest are triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?)
LernzielThe goal is to make students familiar with fundamental concepts, techniques and results in combinatorial and computational geometry, so as to enable them to model, analyze, and solve theoretical and practical problems in the area and in various application domains.
In particular, we want to prepare students for conducting independent research, for instance, within the scope of a thesis project.
InhaltPlanar and geometric graphs, embeddings and their representation (Whitney's Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theorem, convexity in R^d, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan's Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations.
LiteraturMark de Berg, Marc van Kreveld, Mark Overmars, Otfried Cheong, Computational Geometry: Algorithms and Applications, Springer, 3rd ed., 2008.
Satyan Devadoss, Joseph O'Rourke, Discrete and Computational Geometry, Princeton University Press, 2011.
Stefan Felsner, Geometric Graphs and Arrangements: Some Chapters from Combinatorial Geometry, Teubner, 2004.
Jiri Matousek, Lectures on Discrete Geometry, Springer, 2002.
Takao Nishizeki, Md. Saidur Rahman, Planar Graph Drawing, World Scientific, 2004.
Voraussetzungen / BesonderesPrerequisites: The course assumes basic knowledge of discrete mathematics and algorithms, as supplied in the first semesters of Bachelor Studies at ETH.
Outlook: In the following spring semester there is a seminar "Geometry: Combinatorics and Algorithms" that builds on this course. There are ample possibilities for Semester-, Bachelor- and Master Thesis projects in the area.
263-4500-00LAdvanced Algorithms Information W9 KP3V + 2U + 3AM. Ghaffari
KurzbeschreibungThis is a graduate-level course on algorithm design (and analysis). It covers a range of topics and techniques in approximation algorithms, sketching and streaming algorithms, and online algorithms.
LernzielThis course familiarizes the students with some of the main tools and techniques in modern subareas of algorithm design.
InhaltThe lectures will cover a range of topics, tentatively including the following: graph sparsifications while preserving cuts or distances, various approximation algorithms techniques and concepts, metric embeddings and probabilistic tree embeddings, online algorithms, multiplicative weight updates, streaming algorithms, sketching algorithms, and derandomization.
Voraussetzungen / BesonderesThis course is designed for masters and doctoral students and it especially targets those interested in theoretical computer science, but it should also be accessible to last-year bachelor students.

Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you're ready for this class or not, please consult the instructor.
252-1407-00LAlgorithmic Game Theory Information W7 KP3V + 2U + 1AP. Penna
KurzbeschreibungGame theory provides a formal model to study the behavior and interaction of self-interested users and programs in large-scale distributed computer systems without central control. The course discusses algorithmic aspects of game theory.
LernzielLearning the basic concepts of game theory and mechanism design, acquiring the computational paradigm of self-interested agents, and using these concepts in the computational and algorithmic setting.
InhaltThe Internet is a typical example of a large-scale distributed computer system without central control, with users that are typically only interested in their own good. For instance, they are interested in getting high bandwidth for themselves, but don't care about others, and the same is true for computational load or download rates. Game theory provides a mathematical model for the behavior and interaction of such selfish users and programs. Classic game theory dates back to the 1930s and typically does not consider algorithmic aspects at all. Only a few years back, algorithms and game theory have been considered together, in an attempt to reconcile selfish behavior of independent agents with the common good.

This course discusses algorithmic aspects of game-theoretic models, with a focus on recent algorithmic and mathematical developments. Rather than giving an overview of such developments, the course aims to study selected important topics in depth.

- Introduction to classic game-theoretic concepts.
- Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity.
- Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization.
- Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the 'Price of Anarchy').
- Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium.
- Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange.
SkriptLecture notes will be usually posted on the website shortly after each lecture.
Literatur"Algorithmic Game Theory", edited by N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Cambridge University Press, 2008;

"Game Theory and Strategy", Philip D. Straffin, The Mathematical Association of America, 5th printing, 2004

Several copies of both books are available in the Computer Science library.
Voraussetzungen / BesonderesAudience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.
401-3054-14LProbabilistic Methods in Combinatorics Information W6 KP2V + 1UB. Sudakov
KurzbeschreibungThis course provides a gentle introduction to the Probabilistic Method, with an emphasis on methodology. We will try to illustrate the main ideas by showing the application of probabilistic reasoning to various combinatorial problems.
InhaltThe topics covered in the class will include (but are not limited to): linearity of expectation, the second moment method, the local lemma, correlation inequalities, martingales, large deviation inequalities, Janson and Talagrand inequalities and pseudo-randomness.
Literatur- The Probabilistic Method, by N. Alon and J. H. Spencer, 3rd Edition, Wiley, 2008.
- Random Graphs, by B. Bollobás, 2nd Edition, Cambridge University Press, 2001.
- Random Graphs, by S. Janson, T. Luczak and A. Rucinski, Wiley, 2000.
- Graph Coloring and the Probabilistic Method, by M. Molloy and B. Reed, Springer, 2002.
401-3901-00LMathematical OptimizationW11 KP4V + 2UR. Zenklusen
KurzbeschreibungMathematical treatment of diverse optimization techniques.
LernzielThe goal of this course is to get a thorough understanding of various classical mathematical optimization techniques with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on this structural understanding.
InhaltKey topics include:
- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and techniques;
- Equivalence between optimization and separation;
- Brief introduction to Integer Programming.
Literatur- Bernhard Korte, Jens Vygen: Combinatorial Optimization. 6th edition, Springer, 2018.
- Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003. This work has 3 volumes.
- Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.
- Alexander Schrijver: Theory of Linear and Integer Programming. John Wiley, 1986.
Voraussetzungen / BesonderesSolid background in linear algebra.
401-4521-70LGeometric Tomography - Uniqueness, Statistical Reconstruction and Algorithms Information Belegung eingeschränkt - Details anzeigen W4 KP2VJ. Hörrmann
KurzbeschreibungSelf-contained course on the theoretical aspects of the reconstruction of geometric objects from tomographic projection and section data.
LernzielIntroduction to geometric tomography and understanding of various theoretical aspects of reconstruction problems.
InhaltThe problem of reconstruction of an object from geometric information like X-ray data is a classical inverse problem on the overlap between applied mathematics, statistics, computer science and electrical engineering. We focus on various aspects of the problem in the case of prior shape information on the reconstruction object. We will answer questions on uniqueness of the reconstruction and also cover statistical and algorithmic aspects.
LiteraturR. Gardner: Geometric Tomography
F. Natterer: The Mathematics of Computerized Tomography
A. Rieder: Keine Probleme mit inversen Problemen
Voraussetzungen / BesonderesA sound mathematical background in geometry, analysis and probability is required though a repetition of relevant material will be included. The ability to understand and write mathematical proofs is mandatory.
Vertiefung in Visual and Interactive Computing
252-0543-01LComputer Graphics Information W8 KP3V + 2U + 2AM. Gross, M. Papas
KurzbeschreibungThis course covers some of the fundamental concepts of computer graphics generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images.
LernzielAt the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.
InhaltThis course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling, geometry representation and texture mapping, we will move on to the physics of light transport, acceleration structures, appearance modeling and Monte Carlo integration. We will apply these principles for computing light transport of direct and global illumination due to surfaces and participating media. We will end with an overview of modern image-based capture and image synthesis methods, covering topics such as geometry and material capture, light-fields and depth-image based rendering.
High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting
Multiple view geometry in computer vision
Physically Based Rendering: From Theory to Implementation
Voraussetzungen / BesonderesPrerequisites:
Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.
The programming assignments will be in C++. This will not be taught in the class.
263-5902-00LComputer Vision Information W8 KP3V + 1U + 3AM. Pollefeys, S. Tang, V. Ferrari
KurzbeschreibungThe goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.
LernzielThe objectives of this course are:
1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.
InhaltCamera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition
Voraussetzungen / BesonderesIt is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.
252-0546-00LPhysically-Based Simulation in Computer GraphicsW5 KP2V + 1U + 1AV. da Costa de Azevedo, B. Solenthaler
KurzbeschreibungDie Vorlesung gibt eine Einführung in das Gebiet der physikalisch basierten Animation in der Computer Graphik und einen Überblick über fundamentale Methoden und Algorithmen. In den praktischen Übungen werden drei Aufgabenblätter in kleinen Gruppen bearbeitet. Zudem sollen in einem Programmierprojekt die Vorlesungsinhalte in einem 3D Spiel oder einer vergleichbaren Anwendung umgesetzt werden.
LernzielDie Vorlesung gibt eine Einführung in das Gebiet der physikalisch basierten Animation in der Computer Graphik und einen Überblick über fundamentale Methoden und Algorithmen. In den praktischen Übungen werden drei Aufgabenblätter in kleinen Gruppen bearbeitet. Zudem sollen in einem Programmierprojekt die Vorlesungsinhalte in einem 3D Spiel oder einer vergleichbaren Anwendung umgesetzt werden.
InhaltIn der Vorlesung werden Themen aus dem Gebiet der physikalisch-basierten Modellierung wie Partikel-Systeme, Feder-Masse Modelle, die Methoden der Finiten Differenzen und der Finiten Elemente behandelt. Diese Methoden und Techniken werden verwendet um deformierbare Objekte oder Flüssigkeiten zu simulieren mit Anwendungen in Animationsfilmen, 3D Computerspielen oder medizinischen Systemen. Es werden auch Themen wie Starrkörperdynamik, Kollisionsdetektion und Charakteranimation behandelt.
Voraussetzungen / BesonderesBasiskenntnisse in Analysis und Physik, Algorithmen und Datenstrukturen und der Programmierung in C++. Kenntnisse auf den Gebieten Numerische Mathematik sowie Gewoehnliche und Partielle Differentialgleichungen sind von Vorteil, werden aber nicht vorausgesetzt.
252-3811-00LCase Studies from Practice Seminar Belegung eingeschränkt - Details anzeigen
Number of participants limited to 24.

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
W3 KP2SM. Brandis
KurzbeschreibungParticipants will learn how to analyze and solve IT problems in practice in a systematic way, present findings to decision bodies, and defend their conclusions.
LernzielParticipants understand the different viewpoints for IT-decisions in practice, including technical and business aspects, can effectively analyze IT questions from the different viewpoints and facilitate decision making.
InhaltParticipants learn how to systematically approach an IT problem in practice. They work in groups of three to solve a case from a participating company in depth, studying provided materials, searching for additional information, analyzing all in depth, interviewing members from the company or discussing findings with them to obtain further insights, and presenting and defending their conclusion to company representatives, the lecturer, and all other participants of the seminar. Participants also learn how to challenge presentations from other teams, and obtain an overview of learnings from the cases other teams worked on.
SkriptMethodologies to analyze the cases and create final presentations. Short overview of each case.
Voraussetzungen / BesonderesSuccesful completion of Lecture "Case Studies from Practice".
252-4601-00LCurrent Topics in Information Security Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 24.

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
W2 KP2SS. Capkun, K. Paterson, A. Perrig
KurzbeschreibungThe seminar covers various topics in information security: security protocols (models, specification & verification), trust management, access control, non-interference, side-channel attacks, identity-based cryptography, host-based attack detection, anomaly detection in backbone networks, key-management for sensor networks.
LernzielThe main goals of the seminar are the independent study of scientific literature and assessment of its contributions as well as learning and practicing presentation techniques.
InhaltThe seminar covers various topics in information security, including network security, cryptography and security protocols. The participants are expected to read a scientific paper and present it in a 35-40 min talk. At the beginning of the semester a short introduction to presentation techniques will be given.

Selected Topics

- security protocols: models, specification & verification
- trust management, access control and non-interference
- side-channel attacks
- identity-based cryptography
- host-based attack detection
- anomaly detection in backbone networks
- key-management for sensor networks
LiteraturThe reading list will be published on the course web site.
252-5051-00LAdvanced Topics in Machine Learning Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 40.

The deadline for deregistering expires at the end of the fourth week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
W2 KP2SJ. M. Buhmann, G. Rätsch, J. Vogt, F. Yang
KurzbeschreibungIn this seminar, recent papers of the pattern recognition and machine learning literature are presented and discussed. Possible topics cover statistical models in computer vision, graphical models and machine learning.
LernzielThe seminar "Advanced Topics in Machine Learning" familiarizes students with recent developments in pattern recognition and machine learning. Original articles have to be presented and critically reviewed. The students will learn how to structure a scientific presentation in English which covers the key ideas of a scientific paper. An important goal of the seminar presentation is to summarize the essential ideas of the paper in sufficient depth while omitting details which are not essential for the understanding of the work. The presentation style will play an important role and should reach the level of professional scientific presentations.
InhaltThe seminar will cover a number of recent papers which have emerged as important contributions to the pattern recognition and machine learning literature. The topics will vary from year to year but they are centered on methodological issues in machine learning like new learning algorithms, ensemble methods or new statistical models for machine learning applications. Frequently, papers are selected from computer vision or bioinformatics - two fields, which relies more and more on machine learning methodology and statistical models.
LiteraturThe papers will be presented in the first session of the seminar.
252-5701-00LAdvanced Topics in Computer Graphics and Vision Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 24.

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
W2 KP2SM. Gross, M. Pollefeys, O. Sorkine Hornung, S. Tang
KurzbeschreibungThis seminar covers advanced topics in computer graphics, such as modeling, rendering, animation, real-time graphics, physical simulation, and computational photography. Each time the course is offered, a collection of research papers is selected and each student presents one paper to the class and leads a discussion about the paper and related topics.
LernzielThe goal is to get an in-depth understanding of actual problems and research topics in the field of computer graphics as well as improve presentations and critical analysis skills.
InhaltThis seminar covers advanced topics in computer graphics,
including both seminal research papers as well as the latest
research results. Each time the course is offered, a collection of
research papers are selected covering topics such as modeling,
rendering, animation, real-time graphics, physical simulation, and
computational photography. Each student presents one paper to the
class and leads a discussion about the paper and related topics.
All students read the papers and participate in the discussion.
Skriptno script
LiteraturIndividual research papers are selected each term. See for the current list.
  • Erste Seite Vorherige Seite Seite  2  von  10 Nächste Seite Letzte Seite     Alle