Search result: Catalogue data in Spring Semester 2015

Electrical Engineering and Information Technology Master Information
Major Courses
A total of 42 CP must be achieved form courses during the Master Program. The individual study plan is subject to the tutor's approval.
Electronics and Photonics
Recommended Subjects
These courses are recommended, but you are free to choose courses from any other special field. Please consult your tutor.
NumberTitleTypeECTSHoursLecturers
151-0620-00LEmbedded MEMS Lab Information
Number of participants limited to 15.
W5 credits3PK. Chikkadi, S. Blunier
AbstractPractical course: Students are introduced to the process steps required for the fabrication of MEMS (Micro Electro Mechanical System) and carry out the fabrication and testing steps in the clean rooms themselves. Additionally, they learn the requirements for working in clean rooms. Processing and characterization will be documented and analyzed in a final report.
ObjectiveStudents learn the individual process steps that are required to make a MEMS (Micro Electro Mechanical System). Students carry out the process steps themselves in laboratories and clean rooms. Furthermore, participants become familiar with the special requirements (cleanliness, safety, operation of equipment and handling hazardous chemicals) of working in the clean rooms and laboratories. The entire production, processing, and characterization of the MEMS is documented and evaluated in a final report.
ContentWith guidance from a tutor, the individual silicon microsystem process steps that are required for the fabrication of an accelerometer are carried out:
- Photolithography, dry etching, wet etching, sacrificial layer etching, critical point drying, various cleaning procedures
- Packaging and electrical connection of a MEMS device
- Testing and characterization of the MEMS device
- Written documentation and evaluation of the entire production, processing and characterization
Lecture notesA document containing theory, background and practical course content is distributed in the informational meeting.
LiteratureThe document provides sufficient information for the participants to successfully participate in the course.
Prerequisites / NoticeParticipating students are required to attend all scheduled lectures and meetings of the course.

Participating students are required to provide proof that they have personal accident insurance prior to the start of the laboratory portion of the course.

This master's level course is limited to 15 students per semester for safety and efficiency reasons.
If there are more than 15 students registered, we regret to restrict access to this course by the following rules:

Priority 1: master students of the master's program in "Micro and Nanosystems"

Priority 2: master students of the master's program in "Mechanical Engineering" with a specialization in Microsystems and Nanoscale Engineering (MAVT-tutors Profs Daraio, Dual, Hierold, Koumoutsakos, Nelson, Norris, Park, Poulikakos, Pratsinis, Stemmer), who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 3: master students, who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 4: all other students (PhD, bachelor, master) with a background in silicon or microsystems process technology.

If there are more students in one of these priority groups than places available, we will decide by drawing lots.
Students will be notified at the first lecture of the course (introductory lecture) as to whether they are able to participate.

The course is offered in autumn and spring semester.
227-0158-00LSemiconductor Transport Theory and Monte Carlo Device Simulation Information W4 credits2V + 1UF. Bufler, A. Schenk
AbstractThe first part deals with semiconductor transport theory including the necessary quantum mechanics.
In the second part, the Boltzmann equation is solved with the stochastic methods of Monte Carlo simulation.
The exercises address also TCAD simulations of MOSFETs. Thus the topics include theoretical physics,
numerics and practical applications.
ObjectiveOn the one hand, the link between microscopic physics and its concrete application in device simulation is established; on the other hand, emphasis is also laid on the presentation of the numerical techniques involved.
ContentQuantum theoretical foundations I (state vectors, Schroedinger and Heisenberg picture). Band structure (Bloch theorem, one dimensional periodic potential, density of states). Pseudopotential theory (crystal symmetries, reciprocal lattice, Brillouin zone).
Semiclassical transport theory (Boltzmann transport equation (BTE), scattering processes, linear transport).<br>
Monte Carlo method (Monte Carlo simulation as solution method of the BTE, algorithm, expectation values).<br>
Implementational aspects of the Monte Carlo algorithm (discretization of the Brillouin zone, self-scattering according to Rees, acceptance- rejection method etc.). Bulk Monte Carlo simulation (velocity-field characteristics, particle generation, energy distributions, transport parameters). Monte Carlo device simulation (ohmic boundary conditions, MOSFET simulation).
Quantum theoretical foundations II (limits of semiclassical transport theory, quantum mechanical derivation of the BTE, Markov-Limes).
Lecture notesLecture notes (in German)
227-0366-00LIntroduction to Computational Electromagnetics Information W6 credits4GC. Hafner, J. Leuthold, J. Smajic
AbstractAn overview over the most prominent methods for the simulation of electromagnetic fields is given This includes domain methods such as finite differences and finite elements, method of moments, and boundary methods. Both time domain and frequency domain techniques are considered.
ObjectiveOverview of numerical methods for the simulation of electromagnetic fields and hands-on experiments with selected methods.
ContentOverview of concepts of the main numerical methods for the simulation of electromagnetic fields: Finite Difference Method, Finite Element Method, Transmission Line Matrix Method, Matrix Methods, Multipole Methods, Image Methods, Method of Moments, Integral Equation Methods, Beam Propagation Method, Mode Matching Technique, Spectral Domain Analysis, Method of Lines. Applications: Problems in electrostatic and magnetostatic, guided waves and free-space propagation problems, antennas, resonators, inhomogeneous transmissionlLines, nanotechnic, optics etc.
Lecture notesDownload from: http://alphard.ethz.ch/hafner/Vorles/lect.htm
Prerequisites / NoticeFirst half of the semester: lectures; second half of the semester: exercises in form of small projects
227-0376-00LReliability of Electronic Equipment and SystemsW4 credits2V + 1UU. Sennhauser, M. Held
AbstractReliability and availability are basic properties for safe and sustainable products in communications, energy and medical technology, air and space applications, and electronics. They are described as stochastic and physical processes and have to be optimized with functionality, environmental impact and life cycle costs in development phase already. The required basics will be taught.
ObjectiveIntroduction to the concepts and methods of systems engineering for the design and production of reliable devices, equipment, and systems.
ContentQuality assurance of technical systems (introduction); introduction to stochastic processes; reliability analysis; design and investigation of fault-tolerant structures; component selection and qualification; maintainability analysis (introduction); software quality; design rules for reliability, maintainability, and software quality; availability analysis (introduction); reliability tests (introduction).
Lecture notesCopies of relevant transparencies and additional tables
LiteratureReliability Engineering, Springer 2004, ISBN 3-540-40287-X
227-0468-00LAnalog Signal Processing and Filtering Information
Suitable for Master Students as well as Doctoral Students.

This course will be offered in Autumn Semester from HS 2015 on.
It won't be offered in Spring 2016 anymore.
W6 credits2V + 2UH. Schmid
AbstractThis lecture provides a wide overview over analogue (mostly integrated) filters (continuous-time and discrete-time), amplifiers, and sigma-delta converters, and gives examples with sensor interfaces and class-D audio drivers. All circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers.
ObjectiveThis lecture provides a wide overview over analogue (mostly integrated) filters (continuous-time and discrete-time), amplifiers, and sigma-delta converters, and gives examples with sensor interfaces and class-D audio drivers. All these circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers. The way the exam is done allows for the different interests of the two groups.

The learning goal is that the students can apply signal-flow graphs and can understand the signal flow in such circuits and systems (including non-ideal effects) well enough to enable them to gain an understanding of further circuits and systems by themselves.
ContentAt the beginning, signal-flow graphs in general and driving-point signal-flow graphs in particular are introduced. We will use them during the whole term to analyze circuits and understand how signals propagate through them. The theory and CMOS implementation of active Filters is then discussed in detail using the example of Gm-C filters. Theory and implementation of opamps, current conveyors, and inductor simulators follow. The link to the practical design of circuits and systems is done with an overview over different quality measures and figures of merit used in scientific literature and datasheets. Finally, an introduction to switched-capacitor filters and circuits is given, including sensor read-out amplifiers, correlated double sampling, and chopping. These topics form the basis for the longest part of the lecture: the discussion of sigma-delta A/D and D/A converters, which are portrayed as mixed analog-digital (MAD) filters in this lecture.
Lecture notesThe base for these lectures are lecture notes and two or three published scientific papers. From these papers we will together develop the technical content.

Details: http://people.ee.ethz.ch/~hps/asfwiki/

Some material is protected by password; students from ETHZ who are interested can write to haschmid@ethz.ch to ask for the password even if they do not attend the lecture.
Prerequisites / NoticePrerequisites: Recommended (but not required): Stochastic models and signal processing, Communication Electronics, Analog Integrated Circuits, Transmission Lines and Filters.

Knowledge of the Laplace Transform (transfer functions, poles and zeros, bode diagrams, stability criteria ...) and of the main properties of linear systems is necessary.
227-0659-00LIntegrated Systems Seminar Information W1 credit1SA. Schenk
AbstractIn the "Fachseminar IIS" the students learn to communicate topics, ideas or problems of scientific research by listening to more experienced authors and by presenting scientific work in a conference-like situation for a specific audience.
ObjectiveThe seminar aims at instructing graduate and PhD students in the basics of presentation techniques, i.e. "how to give a professional talk". Attendees have the possibility to become acquainted with a current topic by a literature study, and to present the results thereof in a 20 minutes talk in English. The participation at the seminar gives also an overview on current problems in modern nanoelectronics and bio-electromagnetics.
ContentThe seminar topics' are design of digital integrated circuits, physical characterization in nanoelectronics and bio-electromagnetics Simulation.

The studens learn how to find the right literature for a certain topic quickly, as well as how to prepare a talk for a scientific conference, i.e. presentation techniques.
Lecture notesPresentation material
Literatureto be discussed with the advisor
227-0662-00LOrganic and Nanostructured Optics and Electronics Information W6 credits4GV. Wood
AbstractThis course examines the optical and electronic properties of excitonic materials that can be leveraged to create thin-film light emitting devices and solar cells. Laboratory sessions provide students with experience in synthesis and optical characterization of nanomaterials as well as fabrication and characterization of thin film devices.
ObjectiveGain the knowledge and practical experience to begin research with organic or nanostructured materials and understand the key challenges in this rapidly emerging field.
Content0-Dimensional Excitonic Materials (organic molecules and colloidal quantum dots)

Energy Levels and Excited States (singlet and triplet states, optical absorption and luminescence).

Excitonic and Polaronic Processes (charge transport, Dexter and Förster energy transfer, and exciton diffusion).

Devices (photodetectors, solar cells, and light emitting devices).
LiteratureLecture notes and reading assignments from current literature to be posted on website.
Prerequisites / NoticeCourse grade will be based on a final project.
227-0664-00LTechnology and Policy of Electrical Energy StorageW4 credits2GV. Wood, T. Schmidt
Abstract
ObjectiveThe students will learn of the complexity involved in battery research, design, production, as well as in investment, economics and policy making around batteries. Students from technical disciplines will gain insights into policy, while students from social science backgrounds will gain insights into technology.
ContentWith the global emphasis on decreasing CO2 emissions, achieving fossil fuel independence, and integrating renewables on the electric grid, developing and implementing energy storage solutions for electric mobility and grid stabilization represent a key technology and policy challenge. The class will focus on lithium ion batteries since they are poised to enter a variety of markets where policy decisions will affect their production, adoption, and usage scenarios. The course considers the interplay between technology, economics, and policy.
Lecture notesMaterials will be made available on the website.
LiteratureMaterials will be made available on the website.
Prerequisites / NoticeStrong interest in energy and technology policy.
Energy and Power Electronics
Core Subjects
These core subjects are particularly recommended for the field of "Energy and Power Electronics".
NumberTitleTypeECTSHoursLecturers
227-0528-00LPower System Dynamics and Control Information W6 credits4GG. Andersson, M. Zima
AbstractDynamic processes in power systems, load-frequency control, voltage control, stability, line protection.
ObjectiveDynamic processes in power systems, load-frequency control, voltage control, stability, line protection.
ContentDynamical properties of electric machines, networks, loads and integrated systems. Models of power plants, turbines, turbine control, load-frequency control, tie-line control. Models of synchronous machines. Equal area criterion. Small signal stability. Voltage control and static stability. Properties of protection systems: dependability, reliability, selectivity, back-up functions, economy. Line protections: Influence of fault impedance, grounding, time setting. Differential protections. Digital protections. Intelligent protections.
Lecture notesLecture notes. WWW pages.
227-0248-00LPower Electronic Systems II Information W6 credits4GJ. W. Kolar
AbstractThis course details structures, operating ranges, and control concepts of modern power electronic systems to provide a deeper understanding of power electronic circuits and power components. Most recent concepts of high switching frequency AC/DC converters and AC/AC matrix inverters are presented. Simulation exercises, implemented in GeckoCIRCUITS, are used to consolidate the concepts discussed.
ObjectiveThe objective of this course is to convey knowledge of structures, operating ranges, and control concepts of modern power electronic systems. Further objectives are: to know most recent concepts and operation modes of high switching frequency AC/DC converters and AC/AC matrix inverters; to develop a deeper understanding of multi-pulse power converter circuits, transformers, and electromechanical energy converters; and to understand in-depth details of power electronic systems. Simulation exercises, implemented in the electric circuit simulator GeckoCIRCUITS, are used to consolidate the presented theoretical concepts.
ContentConverter dynamics and control: State Space Averaging, transfer functions, controller design, impact of the input filter on the converter transfer functions.
Performance data of single-phase and three-phase systems: effect of different loss components on the efficiency characteristics, linear and non-linear single phase loads, power flow of general three-phase systems, space vector calculus.
Modeling and control of three-phase PWM rectifiers: system characterization using rotating coordinates, control structure, transfer functions, operation with symmetrical and unsymmetrical mains voltages.
Scaling laws of transformers and electromechanical actuators.
Drives with permanent magnet synchronous machines: basic function, modeling, field-oriented control.
Unidirectional AC/DC converters and AC/AC converters: voltage and current DC link converters, indirect and direct matrix converters.
Lecture notesLecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features.
Prerequisites / NoticePrerequisites: Introductory course on power electronics.
227-0529-00LSmartGrids: System Optimization of Smart and Liberalized Electric Power Systems Information W6 credits4GR. Bacher
AbstractModel based optimization of SmartGrids systems considering Physics, Economics and Legislation; Optimality conditions and solutions; Lagrange-Multipliers and market prices; Price incentives in case of restrictions and grid constraints; Transmission grid congestions and implicit auctions; Security of supply with high variability + market requirements; Electricity market and SmartGrids system models.
Objective- Understanding the legal, physical and market based framework for Smart Grid based electric power systems.
- Understanding the theory of mathematical optimization models and algorithms for a secure and market based operation of Smart Power Systems.
- Gaining experience with the formulation, implementation and computation of constrained optimization problems for Smart Grid and market based electricity systems.
Content- Legal conditions for the regulation and operation of electric power systems (CH, EU).
- Physical laws and constraints in electric power systems.
- Special characteristics of the good "electricity".
- Optimization as mathematical tool for analyzing network based electric power systems.
- Types of optimization problems, optimality conditions and optimization methods.
- Various electricity market models, their advantages and disadvantages.
- SmartGrids: The new energy system and compatibility issues with traditional market models.
Lecture notesText book is continuously updated and distributed to students.
LiteratureClass text book contains active hyperlinks related to back ground material.
Prerequisites / NoticeMotivation, Active participation (discussions). Numerical analysis, power system basics and modeling, optimization basics
227-0207-00LNonlinear Systems and Control Information
Prerequisite: Control Systems (227-0103-00L)
W6 credits4GE. Gallestey Alvarez, P. F. Al Hokayem
AbstractTo introduce students to the area of nonlinear systems and control, to familiarize them with tools for modelling and analysing nonlinear systems and to provide an overview of the various nonlinear controller design methods.
ObjectiveOn completion of the course, students understand the difference between linear and nonlinear systems, know the the mathematical techniques for modeling and analysing these systems, and have learnt various methods for designing controllers for these systems.
Course puts the student in the position to deploy nonlinear control techniques in real applications. Theory and exercises are combined for better understanding of virtues and drawbacks in the different methods.
ContentVirtually all practical control problems are of nonlinear nature. In some
cases the application of linear control methods will lead to satisfying controller performance. In many other cases only application of nonlinear analysis and synthesis methods will guarantee achievement of the desired objectives. During the past decades a number of practically applicable and mature nonlinear controller design methods have been developed and have proven themselves in applications. After an introduction of the basic methods for modelling and analysing nonlinear systems, these methods will be introduced together with a critical discussion of their pros and cons, and the students will be familiarized with the basic concepts of nonlinear control theory.

This course is designed as an introduction to the nonlinear control field and thus no prior knowledge of this area is required. The course builds, however, on a good knowledge of the basic concepts of linear control.
Lecture notesAn english manuscript will be made available on the course homepage during the course.
LiteratureH.K. Khalil: Nonlinear Systems, Prentice Hall, 2001.
Prerequisites / NoticePrerequisites: Linear Control Systems, or equivalent.
227-0518-00LEnergy Conversion in Mechatronics Information W6 credits4GU. Bikle, A. Colotti, L. Küng
AbstractKnowledge of the relevant target parameters with the Design process of electrical machines. Understanding and use of methods, which are used during the Design optimization.
ObjectiveKnowledge of the relevant target parameters with the Design process of electrical machines. Understanding and use of methods, which are used during the Design optimization.
ContentThe field of application of the electrical machines reaches from the clock drive over engines for electric power tools, industrial drives and vehicles up to the generators for the energy production. Starting with the general bases of the machine Design target parameters for two selected types of electrical machines are deduced and optimization tasks are treated. Computer-aided methods are applied like: Finite elements or simulations. Further practice-relevant models are presented from higher electrical engineering, as well as from the directly involved fields of activity such as mechanics, fluid dynamics/cooling, insulation technology. The lecture material is deepened by exercises on the basis of practical examples. Integrated constituent of the lecture is a industrial visit for illustrating the practice.
Lecture notesManuscript for lecture, worksheets and exercise, optimization software.
LiteratureFor references see manuscriptum
227-0536-00LMultiphysics Simulations for Power Systems Information W3 credits2V + 1UJ. Smajic
AbstractThe goals of this course are a) understanding the fundamentals of the electromagnetic, thermal, mechanical, and coupled field simulations and b) performing effective simulations of primary equipment of electric power systems. The course is understood complementary to 227-0537-00L "Technology of Electric Power System Components", but can also be taken separately.
ObjectiveThe student should learn the fundamentals of the electromagnetic, thermal, mechanical, and coupled fields simulations necessary for modern product development and research based on virtual prototyping. She / he should also learn the theoretical background of the finite element method (FEM) and its application to low- and high-frequency electromagnetic field simulation problems. The practical exercises of the course should be done by using one of the commercially available field simulation software (Infolytica, ANSYS, and / or COMSOL). After completing the course the student should be able to properly and efficiently use the software to simulate practical design problems and to understand and interpret the obtained results.
Content1. Elektromagnetic Fields and Waves: Simulation Aspects (1 lecture, 2 hours)
a. Short review of the governing equations
b. Boundary conditions
c. Initial conditions
d. Linear and nonlinear material properties
e. Coupled fields (electro-mechanical and electro-thermal coupling)

2. Finite Element Method for elektromagnetic simulations (5 lectures and 3 exercises, 16 hours)
a. Scalar-FEM in 2-D (electrostatic, magnetostatic, eddy-currents, etc.)
b. Vector-FEM in 3-D (3-D eddy-currents, wave propagation, etc.)
c. Numerical aspects of the analysis (convergence, linear solvers, preconditioning, mesh quality, etc.)
d. Matlab code for 2-D FEM for learning and experimenting

3. Practical applications (5 lectures and 5 exercises, 20 hours)
a. Dielectric analysis of high-voltage equipment
b. Nonlinear quasi-electrostatic analysis of surge arresters
c. Eddy-currents analysis of power transformers
d. Electromagnetic analysis of electric machines
e. Very fast transients in gas insulated switchgears (GIS)
f. Electromagnetic compatibility (EMC)
227-0537-00LTechnology of Electric Power System Components Information W6 credits4GC. Franck
AbstractBasics of the technology of important components in electric power transmission and distribution systems (primary technology).
ObjectiveAt the end of this course, the students can name the primary components of electric power systems and explain where and why they are used. For the most important components, the students can explain the working principle in detail and calculate and derive key parameters.
ContentBasic physical and engineering aspects for transmission and distribution of electric power. Limiting boundary conditions are not only electrical parameters, but also mechanical, thermal, chemical, environmental and economical aspects.
The lecture covers the most important traditional components, but also new trends and the dimensioning of components with computer simulations.
Parts of the lecture will be held by external experts in the field and there will be two excursions, one to a utility and one to an industrial company.

The course "Multiphysics Simulations for Power Systems 227-0536-00L" is aligned with the present course and considered complementary.
Lecture notesyes
Literatureadditional literature will be available online via the teaching document repository.
Prerequisites / NoticeContent of lecture "Electric Power Systems" must be known. Lecture "High voltage technology" is recommended.
Recommended Subjects
These courses are recommended, but you are free to choose courses from any other special field. Please consult your tutor.
NumberTitleTypeECTSHoursLecturers
227-0376-00LReliability of Electronic Equipment and SystemsW4 credits2V + 1UU. Sennhauser, M. Held
AbstractReliability and availability are basic properties for safe and sustainable products in communications, energy and medical technology, air and space applications, and electronics. They are described as stochastic and physical processes and have to be optimized with functionality, environmental impact and life cycle costs in development phase already. The required basics will be taught.
ObjectiveIntroduction to the concepts and methods of systems engineering for the design and production of reliable devices, equipment, and systems.
ContentQuality assurance of technical systems (introduction); introduction to stochastic processes; reliability analysis; design and investigation of fault-tolerant structures; component selection and qualification; maintainability analysis (introduction); software quality; design rules for reliability, maintainability, and software quality; availability analysis (introduction); reliability tests (introduction).
Lecture notesCopies of relevant transparencies and additional tables
LiteratureReliability Engineering, Springer 2004, ISBN 3-540-40287-X
227-0730-00LPower Market II - Modeling and Strategic Positioning Information W6 credits4GD. Reichelt, G. A. Koeppel
AbstractModel to price options, analysis of sensitivities, delta and gamma neutral hedging of a portfolio, financial modelling of physical assets, evaluation of power plants using discounted cash flows or real options, management of a portfolio.
ObjectiveModel to price options, analysis of sensitivities, delta and gamma neutral hedging of a portfolio, financial modelling of physical assets, evaluation of power plants using discounted cash flows or real options, management of a portfolio.
Content5. Options and derivatives

6. Hedging strategies
6.1 Delta and gamma-neutral hedging
6.2 Replicating portfolio
6.3 Option strategies

7. Finance and valuation
7.1 Valuation of assets, power stations and grids
7.2 Real options

8. Commodities
8.1 Commodity trading
8.2 Emission trading
8.3 Guarantees of orignation system

9. Marketing & Sales
9.1 Structured products
9.2 Marketing
Lecture notesHandouts - all material in English
Prerequisites / Notice2 day excursion, presentations of invited speakers from the industry
227-0221-00LModel Predictive Control Information Restricted registration - show details
Enrolling necessary (see "Notice").
W6 credits4GM. Morari
AbstractSystem complexity and demanding performance render traditional control inadequate. Applications from the process industry to the communications sector increasingly use MPC. The last years saw tremendous progress in this interdisciplinary area. The course first gives an overview of basic concepts and then uses them to derive MPC algorithms. There are exercises and invited speakers from industry.
ObjectiveIncreased system complexity and more demanding performance requirements have rendered traditional control laws inadequate regardless if simple PID loops are considered or robust feedback controllers designed according to some H2/infinity criterion. Applications ranging from the process industries to the automotive and the communications sector are making increased use of Model Predictive Control (MPC), where a fixed control law is replaced by on-line optimization performed over a receding horizon. The advantage is that MPC can deal with almost any time-varying process and specifications, limited only by the availability of real-time computer power.
In the last few years we have seen tremendous progress in this interdisciplinary area where fundamentals of systems theory, computation and optimization interact. For example, methods have emerged to handle hybrid systems, i.e. systems comprising both continuous and discrete components. Also, it is now possible to perform most of the computations off-line thus reducing the control law to a simple look-up table.
The first part of the course is an overview of basic concepts of system theory and optimization, including hybrid systems and multi-parametric programming. In the second part we show how these concepts are utilized to derive MPC algorithms and to establish their properties. On the last day, speakers from various industries talk about a wide range of applications where MPC was used with great benefit.
There will be exercise sessions throughout the course where the students can test their understanding of the material. We will make use of the MPC Toolbox for Matlab that is distributed by MathWorks.
ContentTentative Program

Day 1: Linear Systems I
Fundamentals of linear system theory – Review (system representations, poles, zeros, stability, controllability & observability, stochastic system descriptions, modeling of noise).

Day 2: Linear Systems II
Optimal control and filtering for linear systems (linear quadratic regulator, linear observer, Kalman Filter, separation principle, Riccati Difference Equation).

Days 3 and 4: Basics on Optimization
Fundamentals of optimization (linear programming, quadratic programming, mixed integer linear/quadratic programming, duality theory, KKT conditions, constrained optimization solvers).
Exercises.

Day 5: Introduction to MPC
MPC – concept and formulation, finite horizon optimal control, receding horizon control, stability and feasibility, computation.
Exercises.

Day 6: Numerical methods for MPC
Unconstrained Optimization, Constrained Optimization, Software applications

Day 7: Practical Aspects, Explicit & Hybrid MPC
- Reference tracking and soft constraints
- Explicit solution to MPC for linear constrained systems. Motivation. Introduction to (multi)-parametric programming through a simple example. Multi-parametric linear and quadratic programming: geometric algorithm. Formulation of MPC for linear constrained systems as a multi-parametric linear/quadratic program. A brief introduction to Multi-parametric Toolbox.
- MPC for discrete-time hybrid systems. Introduction to hybrid systems. Models of hybrid systems (MLD, DHA, PWA, etc.). Equivalence between different models. Modelling using HYSDEL. MLD systems. MPC based on MILP/MIQP. Explicit solution: mpMILP. Short introduction into dynamic programming (DP). Computation of the explicit MPC for PWA systems based on DP. Exercises.

Day 8: Applications
Invited speakers from industry and academia, different case studies

Day 9
Design exercise
Lecture notesScript / lecture notes will be provided.
Prerequisites / NoticePrerequisites:
One semester course on automatic control, Matlab, linear algebra.

ETH students:
As participation is limited, a reservation (e-mail: bolleal@control.ee.ethz.ch) is required. Please give information on your "Studienrichtung", semester, institute, etc.
After your reservation has been confirmed, please register online at www.mystudies.ethz.ch.

Interested persons from outside ETH:
It is not possible/needed to enrol as external auditor for this course. Please contact Alain Bolle to register for the course (bolleal@control.ee.ethz.ch).

We have only a limited number of places in the course, it is "first come, first served"!
227-0708-00LDiagnostics, Measurement and Testing Technology in High Voltage Technology Information E-0 credits2SH.‑J. Weber
AbstractDiscussion of various diagnostic methods to evaluate the electrical insulation of the components and subsystems of high-voltage networks. Independent performance of experiments in the laboratory using high and low voltages. Acquaintance with the most important testing methods and international standards. Calibration methods and maintenance of high-voltage measuring devices.
Objectivesee above
Lecture notesHandouts
Literature- M. Beyer, W. Boeck, K. Möller, W. Zaengl: Hochspannungstechnik, Springer-Verlag, 1986
- A. Küchler: Hochspannungstechnik, Springer, Berlin, 3. Auflage, 2009
227-0516-01LElectrical Drive Systems I Information W6 credits4GP. Steimer, A. Omlin, C. A. Stulz
AbstractIn the course "Antriebssysteme I", a complete electrical drive including its main components is investigated. This includes mainly electrical machines, power seminconductors, power electronics converters and control algorithms for the complete drive system. Regarding the machines, the main focus is on the asynchronous machine, but also other concepts are covered.
ObjectiveThe students understand a complete electrical drive system including its main components like electrical machines, converters and controls.
ContentFundamentals in mechanics and magnetic circuits; Induction machine and synchronous machine; DC machine; Power semiconductors; Converter topologies; Controls (i.e. field oriented control); Traction application; Implementation of the control on a microcontroller.
Lecture notesLecture notes will be distributed (hardcopy und elektronisch)
Prerequisites / NoticePrerequisites: Power Electronics (fall) or equivalent.

Visit of ABB Power Electronics and Medium Voltage Drives
  • First page Previous page Page  3  of  5 Next page Last page     All