Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind.
Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

Suchergebnis: Katalogdaten im Herbstsemester 2016

Gesundheitswissenschaften und Technologie Master Information
Vertiefung in Gesundheit, Ernährung und Umwelt
Wahlfächer I
752-6151-00LPublic Health ConceptsW3 KP2VR. Heusser
KurzbeschreibungThe module "public health concepts" offers an introduction to key principles of public health. Students get acquainted with the concepts and methods of epidemiology. Students also learn to use epidemiological data for prevention and health promotion purposes. Public health concepts and intervention strategies are presented, using examples from infectious and chronic diseases.
LernzielAt the end of this module students are able:
- to interpret the results of epidemiological studies
- to critically assess scientific literature
- to know the definition, dimensions and determinants of health
- to plan public health interventions and health promotion projects
InhaltConcepts of descriptive and analytical epidemiology, study designs, measures of effect, confounding and bias, screening, surveilllance, definition of health and health promotion, health dimensions and health determinants, prevention strategies, public health interventions, public health action cycle, epidemiology and prevention of infectious and chronic diseases (HIV, Tuberculosis, Obesity, Public health nutrition).
SkriptHandouts are provided to students in the classroom.
Voraussetzungen / BesonderesLanguage of the course is english
Wahlfächer II
Modul: Infektionskrankheiten
551-0223-00LImmunology III Information W4 KP2VM. Kopf, M. Bachmann, J. Kisielow, A. Lanzavecchia, S. R. Leibundgut, A. Oxenius, R. Spörri
KurzbeschreibungDiese Vorlesung liefert einen detaillierten Einblick in die
- Entwicklung von T Zellen und B Zellen
- Dynamik einer Immunantwort bei akuten und chronischen Infektionen
- Mechanismen von Immunpathologie
- neue Impfstoffstrategien
LernzielSie verstehen
- die Entwicklung, Aktivierung, und Differenzierung verschiedener Typen von T Zellen und deren Effektormechanismen während einer Immunantwort
- die Erkennung von pathogenen Mikroorganismen und molekulare Ereignisse nach Infektion einer Zelle
- Ereignisse und Signale für die Reifung von naiven B Zellen zu antikörperproduzierenden Plasmazellen und Gedächtniszellen,
- Optimierung von B Zellantworten durch das intelligente Design neuer Impfstoffe
Inhalto Development and selection of CD4 and CD8 T cells, natural killer T cells (NKT), and regulatory T cells (Treg)
o NK T cells and responses to lipid antigens
o Differentiation, characterization, and function of CD4 T cell subsets such as Th1, Th2, and Th17
o Overview of cytokines and their effector function
o Co-stimulation (signals 1-3)
o Dendritic cells
o Evolution of the "Danger" concept
o Cells expressing Pattern Recognition Receptors and their downstream signals
o T cell function and dysfunction in acute and chronic viral infections
LiteraturUnterlagen zur Vorlesung sind erhältlich bei:
Voraussetzungen / BesonderesImmunology I and II recommended but not compulsory
636-0017-00LComputational Biology Information W4 KP3GT. Stadler, C. Magnus
KurzbeschreibungThe aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced.
LernzielAttendees will learn which information is contained in genetic sequencing data and how to extract information from them using computational tools. The main concepts introduced are:
* stochastic models in molecular evolution
* phylogenetic & phylodynamic inference
* maximum likelihood and Bayesian statistics
Attendees will apply these concepts to a number of applications yielding biological insight into:
* epidemiology
* pathogen evolution
* macroevolution of species
InhaltThe course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods to directly analyze this alignment (such as BLAST algorithm, GWAS approaches). Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. We finally introduce the field of phylodynamics. The aim of that field is to understand and quantify the population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises.
SkriptSlides of the lecture will be available online.
LiteraturThe course is not based on any of the textbooks below, but they are excellent choices as accompanying material:
* Yang, Z. 2006. Computational Molecular Evolution.
* Felsenstein, J. 2004. Inferring Phylogenies.
* Semple, C. & Steel, M. 2003. Phylogenetics.
* Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST
Voraussetzungen / BesonderesBasic knowledge in linear algebra, analysis, and statistics will be helpful. Some programming experience will be useful for the exercises, but is not required. Programming skills will not be tested in the examination.
701-0263-01LSeminar in Evolutionary Ecology of Infectious DiseasesW3 KP2GD. Croll, S. Bonhoeffer, R. R. Regös
KurzbeschreibungStudents of this course will discuss current topics from the field of infectious disease biology. From a list of publications, each student chooses some themes that he/she is going to explain and discuss with all other participants and under supervision. The actual topics will change from year to year corresponding to the progress and new results occuring in the field.
LernzielThis is an advanced course that will require significant student participation.  Students will learn how to evaluate and present scientific literature and trace the development of ideas related to understanding the ecology and evolutionary biology of infectious diseases.
InhaltA core set of ~10 classic publications encompassing unifying themes in infectious disease ecology and evolution, such as virulence, resistance, metapopulations, networks, and competition will be presented and discussed.  Pathogens will include bacteria, viruses and fungi.  Hosts will include animals, plants and humans.
SkriptPublications and class notes can be downloaded from a web page announced during the lecture.
LiteraturPapers will be assigned and downloaded from a web page announced during the lecture.
701-1703-00LEvolutionary Medicine for Infectious DiseasesW3 KP2GA. Hall
KurzbeschreibungThis course explores infectious disease from both the host and pathogen perspective. Through short lectures, reading and active discussion, students will identify areas where evolutionary thinking can improve our understanding of infectious diseases and, ultimately, our ability to treat them effectively.
LernzielStudents will learn to (i) identify evolutionary explanations for the origins and characteristics of infectious diseases in a range of organisms and (ii) evaluate ways of integrating evolutionary thinking into improved strategies for treating infections of humans and animals. This will incorporate principles that apply across any host-pathogen interaction, as well as system-specific mechanistic information, with particular emphasis on bacteria and viruses.
InhaltWe will cover several topics where evolutionary thinking is relevant to understanding or treating infectious diseases. This includes: (i) determinants of pathogen host range and virulence, (ii) dynamics of host-parasite coevolution, (iii) pathogen adaptation to evade or suppress immune responses, (iv) antimicrobial resistance, (v) evolution-proof medicine. For each topic there will be a short (< 30 minutes) introductory lecture, before students independently research the primary literature and develop half a page of discussion points and questions, followed by interactive discussion in class.
LiteraturStudents will read the primary literature on each topic, and in places we will use the following books:

Schmid Hempel 2011 Evolutionary Parasitology
Stearns & Medzhitov 2016 Evolutionary Medicine
Voraussetzungen / BesonderesA basic understanding of evolutionary biology, microbiology or parasitology will be advantageous but is not essential.
752-4009-00LMolecular Biology of Foodborne PathogensW3 KP2VM. Loessner, M. Schuppler
KurzbeschreibungThe course offers detailed information on selected foodborne pathogens and toxin producing organisms; the focus lies on relevant molecular biological aspects of pathogenicity and virulence, as well as on the occurrence and survival of these organisms in foods.
LernzielDetailed and current status of research and insights into the molecular basis of foodborne diseases, with focus on interactions of the microorganism or the toxins they produce with the human system. Understanding the relationship between specific types of food and the associated pathogens and microbial risks. Another focus lies on the currently available methods and techniques useful for the various purposes, i.e., detection, differentiation (typing), and antimicrobial agents.
InhaltMolecular biology of infectious foodborne pathogens (Listeria, Vibrio, E. coli, Campylobacter, etc) and toxin-producing organisms (Bacillus, Clostridium, Staphylococcus). How and under which conditions will toxins and virulence factors be produced, and how do they work? How is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment ? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages in microbial pathogenicity will be highlighted, in addition to various applications of bacteriophage for both diagnsotics and antimicrobial intervention.
SkriptElectronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.
LiteraturRecommendations will be given in the first lecture
Voraussetzungen / BesonderesLectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), with no break !
Modul: Ernährung und Gesundheit
752-2122-00LFood and Consumer BehaviourW2 KP2VM. Siegrist, C. Hartmann
KurzbeschreibungThis course focuses on food consumer behavior, consumer's decision-making processes and consumer's attitudes towards food products.
LernzielThe course provides an overview about the following topics: Factors influencing consumer's food choice, food and health, attitudes towards new foods and food technologies, labeling and food policy issues
752-5103-00LFunctional Microorganisms in FoodsW3 KP2GC. Lacroix, T. de Wouters, L. Meile, C. Schwab
KurzbeschreibungThis integration course will discuss new applications of microorganisms with functional properties in food and functional food products. Selected topics will be used to illustrate the rapid development but also limits of basic knowledge for applications of functional microorganisms to produce food with high quality, safety and potential health benefits for consumers.
LernzielTo understand the principles, roles and mechanisms of microorganisms with metabolic activities of high potential for application in traditional and functional foods utilization with high quality, safety and potential health benefits for the consumers. This course will integrate basic knowledge in food microbiology, microbial physiology, biochemistry, and technology.
InhaltThis course will address selected and current topics on new applications of microorganisms with functional properties in food and functional food products and characterization of functionality and safety of food bacteria. Specialists from the Laboratory of Food Biotechnology, as well as invited speakers from the industry will contribute to the selected topics as follows:

- Probiotics and Prebiotics: Probiotics, functional foods and health, towards understanding molecular modes of probiotic action; Challenges for the production and addition of probiotics to foods; Prebiotics and other microbial substrates for gut functionality.

- Bioprotective Cultures and Antimicrobial Metabolites: Antifungal cultures and applications in foods; Antimicrobial peptide-producing cultures (bacteriocins) for enhancing food quality and safety; Development of new protective cultures, the long path from research to industry.

- Legal and Protection Issues Related Functional Foods

- Industrial Biotechnology of Flavor and Taste Development

- Safety of Food Starter Cultures and Probiotics

Students will be required to complete a group project on food products and ingredients with of from functional bacteria. The project will involve information research and analysis followed by an oral presentation and short writen report.
SkriptCopy of the power point slides from lectures will be provided.
LiteraturA list of references will be given at the beginning of the course for the different topics presented during this course.
752-6101-00LDietary Etiologies of Chronic DiseaseW3 KP2VM. B. Zimmermann
KurzbeschreibungTo have the student gain understanding of the links between the diet and the etiology and progression of chronic diseases, including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.
LernzielTo examine and understand the protective effect of foods and food ingredients in the maintenance of health and the prevention of chronic disease, as well as the progression of complications of the chronic diseases.
InhaltThe course evaluates food and food ingredients in relation to primary and secondary prevention of chronic diseases including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.
SkriptThere is no script. Powerpoint presentations will be made available on-line to students.
LiteraturTo be provided by the individual lecturers, at their discretion.
Voraussetzungen / BesonderesNo compulsory prerequisites, but prior completion of Human Nutrition I + II (Humanernährung I+II) is strongly advised.
752-6402-00LNutrigenomicsW3 KP2VG. Vergères
KurzbeschreibungNutrigenomics - toward personalized nutrition?
Breakthroughs in biology recently led nutrition scientists to apply modern tools (genomics, transcriptomics, proteomics, metabolomics, genetics, epigenetics) to the analysis of the interactions of food with humans. The lecture presents these tools and illustrates their application in selected topics relevant to human nutrition and food sciences.
Lernziel- Overall understanding of the transdisciplinary research being conducted under the term nutrigenomics.
- Overall understating of the omics technologies used in nutrigenomics and their applications to human nutrition and food science.
- Ability to critically evaluate the potential and risks associated with the field of nutrigenomics
Inhalt- For the content of the script see section "Skript" below
- The lecture is completed by an optional project entitled 'Personalized Nutrition' in which the students have the opportunity to receive a personalized nutritional guidance that is based on their own genetic makeup. The scientific literature on which the genetic tests are based is presented by the students during the lecture.
SkriptThe script is composed of circa 450 slides (ca 18 slides/lecture) organized in 9 modules

Module A
From biochemical nutrition research to nutrigenomics

Module B
Nutritional genomics

Module C

Module D

Module E
Transcriptomics in nutrition research

Module F
Proteomics in nutrition research

Module G
Metabolomics in nutrition research

Module H
Nutritional systems biology

Module I
Individualized nutrition - opportunities and challenges
LiteraturNo extra reading requested. Most slides in the lecture are referenced with web adresses.
Voraussetzungen / BesonderesBasic training in biochemistry, molecular biology, physiology, and human nutrition. Interest in interdisciplinary sciences linking molecular biology to human health. Interest in the application of analytical laboratory methods to the understanding of human biology, in particular nutrition.
Modul: Umwelt und Gesundheit
701-1341-00LWater Resources and Drinking WaterW3 KP2GS. Hug, M. Berg, F. Hammes, U. von Gunten
KurzbeschreibungThe course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.
LernzielThe goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality.
InhaltThe course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed.
SkriptHandouts will be distributed
LiteraturWill be mentioned in handouts
Vertiefung in Medizintechnik
376-0300-00LTranslational Science for Health and Medicine Belegung eingeschränkt - Details anzeigen O3 KP2GJ. Goldhahn, C. Wolfrum
KurzbeschreibungTranslational science is a cross disciplinary scientific research that is motivated by the need for practical applications that help people. The course should help to clarify basics of translational science, illustrate successful applications and should enable students to integrate key features into their future projects.
LernzielAfter completing this course, students will be able to understand:
Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication)
InhaltWhat is translational science and what is it not?
How to identify need?
- Disease concepts and consequences for research
- Basics about incidence, prevalence etc., and orphan indications
How to choose the appropriate research type and methodology
- Ethical considerations including ethics application
- Pros and cons of different types of research
- Coordination of complex approaches incl. timing and resources
How to measure success?
- Outcome variables
- Improving the translational process
Challenges of communication?
How independent is translational science?
- Academic boundary conditions vs. industrial influences
Positive and negative examples will be illustrated by distinguished guest speakers.
Wahlfächer I
376-0021-00LIntroduction to Biomedical Engineering IW4 KP3GP. Christen, R. Müller, J. G. Snedeker, M. Zenobi-Wong
KurzbeschreibungIntroduction to biomechanics, biomaterials, tissue engineering, medical imaging as well as the history of biomedical engineering.
LernzielUnderstanding of physical and technical principles in biomechanics, biomaterials, tissue engineering, medical imaging as well as the history of biomedical engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.
InhaltTissue and Cellular Biomechanics, Molecular Biomechanics and Biopolymers, Computational Biomechanics, Biomaterials, Tissue Engineering, Radiation and Radiographic Imaging, Diagnostic Ultrasound Imaging, Magnetic Resonance Imaging,
Biomedical Optics and Lasers.
SkriptStored on ILIAS.
LiteraturIntroduction to Biomedical Engineering, 3rd Edition 2011,
Autor: John Enderle, Joseph Bronzino, ISBN 9780123749796
Academic Press
376-1714-00LBiocompatible MaterialsW4 KP3GK. Maniura, J. Möller, M. Zenobi-Wong
KurzbeschreibungIntroduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.
LernzielThe class consists of three parts:
1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
InhaltIntroduction into native and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering and drug delivery are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.
In addition, a link between academic research and industrial entrepreneurship is established by external guest speakers.
SkriptHandouts can be accessed online.
Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013
Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011

(available online via ETH library)

Handouts provided during the classes and references therin.
Wahlfächer II
151-0255-00LEnergy Conversion and Transport in BiosystemsW4 KP2V + 1UD. Poulikakos, A. Ferrari
KurzbeschreibungTheorie und Anwendung von Thermodynamik und Energieerhaltung in biologischen Systemen mit Schwerpunkt auf Zellebene.
LernzielTheorie und Anwendung von Energieerhaltung auf Zellebene. Verständnis für die grundlegenden Stofftransport-Kreisläufe in menschlichen Zellen und die Mechanismen, welche diese Kreisläufe beeinflussen. Parallelen zu anderen Gebieten im Ingenieurswesen erkennen. Wärme- und Massentransport Prozesse in der Zelle, Kraft Entwicklung der Zelle, und die Verbindung zu modernen biomedizinischen Technologien.
InhaltMassentransportmodelle für den Transport von chemischen Spezies in der menschlichen Zelle. Organisation und Funktion der Zellmembran und des Zytoskeletts. Die Rolle molekularer Motoren in der Kraftentwicklung der Zelle und deren Funktion in der Fortbewegung der Zelle. Beschreibung der Funktionsweise dieser Systeme sowie der experimentellen Analyse und Simulationen um sie besser zu verstehen. Einführung in den Zell-Metabolismus, Zell-Energietransport und die Zelluläre Thermodynamik.
SkriptKursmaterial wird in Form von Hand-outs verteilt.
LiteraturNotizen sowie Referenzen aus der Vorlesung.
151-0604-00LMicrorobotics Information
Findet dieses Semester nicht statt.
W4 KP3GB. Nelson
KurzbeschreibungMicrorobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination.
LernzielThe objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
InhaltMain topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots
SkriptThe powerpoint slides presented in the lectures will be made available in hardcopy and as pdf files. Several readings will also be made available electronically.
Voraussetzungen / BesonderesThe lecture will be taught in English.
227-0385-10LBiomedical ImagingW6 KP5GS. Kozerke, K. P. Prüssmann, M. Rudin
KurzbeschreibungIntroduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.
LernzielTo understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.
Inhalt- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging
SkriptLecture notes and handouts
LiteraturWebb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011
Voraussetzungen / BesonderesAnalysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming
227-0391-00LMedical Image AnalysisW3 KP2GP. C. Cattin, M. A. Reyes Aguirre
KurzbeschreibungIt is the objective of this lecture to introduce the basic concepts used
in Medical Image Analysis. In particular the lecture focuses on shape
representation schemes, segmentation techniques, and the various image registration methods commonly used in Medical Image Analysis applications.
LernzielThis lecture aims to give an overview of the basic concepts of Medical Image Analysis and its application areas.
Voraussetzungen / BesonderesBasic knowledge of computer vision would be helpful.
227-0393-10LBioelectronics and Biosensors
New course. Not to be confounded with 227-0393-00L last offered in the Spring Semester 2015.
W6 KP2V + 2UJ. Vörös, M. F. Yanik, T. Zambelli
KurzbeschreibungThe course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.
LernzielDuring this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field
InhaltL1. Bioelectronics history, its applications and overview of the field
- Volta and Galvani dispute
- BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
- Fundamentals of biosensing
- Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons

L4. Acoustics sensors
- Differential equation for quartz crystal resonance
- Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
- Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
- Principles of operation of amperometric sensors
- Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp Y4

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
- MEA and CMOS based recording
- Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning
LiteraturPlonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition)
Voraussetzungen / BesonderesSupervised exercises solving real-world problems. Some Matlab based exercises in groups.
227-0447-00LImage Analysis and Computer Vision Information W6 KP3V + 1UL. Van Gool, O. Göksel, E. Konukoglu
KurzbeschreibungLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition.
LernzielOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
InhaltThe first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed.
SkriptCourse material Script, computer demonstrations, exercises and problem solutions
Voraussetzungen / BesonderesPrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C.
The course language is English.
  • Erste Seite Vorherige Seite Seite  3  von  8 Nächste Seite Letzte Seite     Alle