Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind. Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

Suchergebnis: Katalogdaten im Frühjahrssemester 2015

Informatik Master Information
Vertiefungsfächer
Vertiefung in Visual Computing
Seminar in Visual Computing
NummerTitelTypECTSUmfangDozierende
252-5704-00LAdvanced Methods in Computer Graphics Information Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 24
W2 KP2SM. Gross, O. Sorkine Hornung
KurzbeschreibungThis seminar covers advanced topics in computer graphics with a focus on the latest research results. Topics include modeling, rendering,
animation, physical simulation, computational photography, and others.
LernzielThe goal is to obtain an in-depth understanding of actual problems and
research topics in the field of computer graphics as well as improve
presentation and critical analysis skills.
Wahlfächer in der Informatik
Als Wahlfächer in der Informatik gelten alle angebotenen Kurse im Master-Studiengang des D-INFK.
NummerTitelTypECTSUmfangDozierende
252-0820-00LCase Studies from Practice Information W4 KP2V + 1UM. Brandis
KurzbeschreibungThe course is designed to provide students with an understanding of "real-life" challenges from business settings and teach them how to address these.
LernzielBy using case studies that are based on actual IT projects, students will learn how to deal with complex, not straightforward problems. It will help them to apply their theoretical Computer Science background in practice and will teach them fundamental principles of IT management and challenges with IT in practice.
InhaltThe course consists of multiple lectures about general IT management topics held by Marc Brandis and case studies provided by guest lecturers from either IT companies or IT departments of a diverse range of companies.
Presenting companies so far include Deloitte (how to develop innovative technology solutions for a luxury retailer), Selfnation (lessons learned from a startup company), Credit Suisse (investment banking case), HP (business continuity management), 28msec (product pricing in a software startup company), Open Web Technology (strategic choices in software development), and Marc Brandis Strategic Consulting (various).
263-0600-00LResearch in Computer Science Belegung eingeschränkt - Details anzeigen
Nur für MSc Informatik.
W5 KP11AProfessor/innen
KurzbeschreibungSelbständige Projektarbeit unter der Leitung eines Informatik-Professors / einer Informatik-Professorin.
LernzielProject done under supervision of a professor in the Department of Computer Science.
Voraussetzungen / BesonderesNur Studierende, die eine der folgenden Bedingungen erfüllen, können mit einem Research Projekt beginnen:
a) 1 Lab (Interfokus Kurs) und 1 Kernfokus Kurs
b) 2 Kernfokus Kurse
c) 2 Labs (Interfokus Kurse)

Eine Aufgabenbeschreibung muss zu Beginn des Projekts beim Studiensekretariat eingereicht werden.
272-0300-00LAlgorithmik für schwere Probleme Information
Diese Lerneinheit beinhaltet die Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Informatik A n i c h t !
W4 KP2V + 1UJ. Hromkovic, H.‑J. Böckenhauer, D. Komm
KurzbeschreibungDiese Lerneinheit beschäftigt sich mit algorithmischen Ansätzen zur Lösung schwerer Probleme.
Eine umfassende Reflexion über die Bedeutung der vorgestellten Ansätze für den Informatikunterricht an Gymnasien begleitet den Kurs.
LernzielAuf systematische Weise eine Übersicht über die Methoden zur Lösung schwerer Probleme kennen lernen.
InhaltZuerst wird der Begriff der Berechnungsschwere erläutert (für die Informatikstudierenden wiederholt). Dann werden die Methoden zur Lösung schwerer Probleme systematisch dargestellt. Bei jeder Algorithmenentwurfsmethode wird vermittelt, was sie uns garantiert und was sie nicht sichern kann und womit wir für die gewonnene Effizienz bezahlen.
SkriptUnterlagen und Folien werden zur Verfügung gestellt.
LiteraturJ. Hromkovic: Algorithmics for Hard Problems, Springer 2004.

R. Niedermeier: Invitation to Fixed-Parameter Algorithms, 2006.

F. Fomin, D. Kratsch: Exact Exponential Algorithms, 2010.
272-0302-00LApproximations- und Online-Algorithmen Information W4 KP2V + 1UH.‑J. Böckenhauer, D. Komm
KurzbeschreibungDiese Lerneinheit behandelt approximative Verfahren für schwere Optimierungsprobleme und algorithmische Ansätze zur Lösung von Online-Problemen sowie die Grenzen dieser Ansätze.
LernzielAuf systematische Weise einen Überblick über die verschiedenen Entwurfsmethoden von approximativen Verfahren für schwere Optimierungsprobleme und Online-Probleme zu gewinnen. Methoden kennenlernen, die Grenzen dieser Ansätze aufweisen.
InhaltApproximationsalgorithmen sind einer der erfolgreichsten Ansätze zur Behandlung schwerer Optimierungsprobleme. Dabei untersucht man die sogenannte Approximationsgüte, also das Verhältnis der Kosten einer berechneten Näherungslösung und der Kosten einer (nicht effizient berechenbaren) optimalen Lösung.
Bei einem Online-Problem ist nicht die gesamte Eingabe von Anfang an bekannt, sondern sie erscheint stückweise und für jeden Teil der Eingabe muss sofort ein entsprechender Teil der endgültigen Ausgabe produziert werden. Die Güte eines Algorithmus für ein Online-Problem misst man mit der competitive ratio, also dem Verhältnis der Kosten der berechneten Lösung und der Kosten einer optimalen Lösung, wie man sie berechnen könnte, wenn die gesamte Eingabe bekannt wäre.

Inhalt dieser Lerneinheit sind
- die Klassifizierung von Optimierungsproblemen nach der erreichbaren Approximationsgüte,
- systematische Methoden zum Entwurf von Approximationsalgorithmen (z. B. Greedy-Strategien, dynamische Programmierung, LP-Relaxierung),
- Methoden zum Nachweis der Nichtapproximierbarkeit,
- klassische Online-Probleme wie Paging oder Scheduling-Probleme und Algorithmen zu ihrer Lösung,
- randomisierte Online-Algorithmen,
- Entwurfs- und Analyseverfahren für Online-Algorithmen,
- Grenzen des "competitive ratio"- Modells und Advice-Komplexität als eine Möglichkeit, die Komplexität von Online-Problemen genauer zu messen.
LiteraturDie Vorlesung orientiert sich teilweise an folgenden Büchern:

J. Hromkovic: Algorithmics for Hard Problems, Springer, 2004

A. Borodin, R. El-Yaniv: Online Computation and Competitive Analysis, Cambridge University Press, 1998

D. Komm: Advice and Randomization in Online Computation, 2012
401-3632-00LComputational Statistics Information W10 KP3V + 2UM. Mächler, P. L. Bühlmann
Kurzbeschreibung"Computational Statistics" deals with modern methods of data analysis (aka "data science") for prediction and inference. An overview of existing methodology is provided and also by the exercises, the student is taught to choose among possible models and about their algorithms and to validate them using graphical methods and simulation based approaches.
LernzielGetting to know modern methods of data analysis for prediction and inference.
Learn to choose among possible models and about their algorithms.
Validate them using graphical methods and simulation based approaches.
InhaltDas Schliessen von beobachteten Daten auf komplexe Modelle ist ein zentrales Thema der rechnerorientierten Statistik. Die Modelle sind oft unendlich-dimensional und die statistischen Verfahren deshalb Computer-intensiv.
Als Grundlage wird die klassische multiple Regression eingeführt. Danach werden einige nichtparametrische Verfahren für die Regression und die Klassifikation vorgestellt: Kernschätzer, glättende Splines, Regressions-/Klassifikationsbäume, additive Modelle, Projection Pursuit und evtl. Neuronale Netze, wobei einige davon gut interpretierbar und andere für genaue Prognosen geeignet sind. Insbesondere werden auch die Problematik des Fluchs der Dimension und die stochastische Regularisierung diskutiert. Nebst dem Anpassen eines (komplexen) Modells werden auch die Evaluation, Güte und Unsicherheit von Verfahren und Modellen anhand von Resampling, Bootstrap und Kreuz-Validierung behandelt.

In den Übungen wird mit dem Statistik-Paket R (http://www.R-project.org) gearbeitet. Es werden dabei auch praxis-bezogene Probleme bearbeitet.
Skriptlecture notes are available online; see
http://stat.ethz.ch/education/ (-> "Computational Statistics").
Literatur(see the link above, and the lecture notes)
Voraussetzungen / BesonderesBasic "applied" mathematical calculus and linear algebra.
At least one semester of (basic) probability and statistics.
272-0301-00LMethoden zum Entwurf von zufallsgesteuerten Algorithmen Information
Findet dieses Semester nicht statt.
Diese Lerneinheit beinhaltet die Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Informatik B n i c h t !
W4 KP2V + 1UJ. Hromkovic
KurzbeschreibungDie Studierenden sollen die Entwicklung unserer Vorstellung über Zufall und dessen Rolle verfolgen. Mit Grundkenntnissen der Wahrscheinlichkeitstheorie und grundlegender Arithmetik sollen sie entdecken, dass Zufallssteuerung ein Mittel zur Erreichung unglaublicher Effizienz von Prozessen werden kann. Das Ziel ist, die Methodik des Entwurfs von zufallsgesteuerten Algorithmen zu vermitteln.
LernzielThematische Schwerpunkte
- Modellierung und Klassifizierung von randomisierten Algorithmen
- Die Methode der Überlistung des Gegners: Hashing und randomisierte Online-Algorithmen
- Die Methode der Fingerabdrücke: Kommunikationsprotokolle
- Die Methode der häufigen Zeugen: randomisierter Primzahltest von Solovay und Strassen
- Wahrscheinlichkeitsverstärkung durch Wiederholung
- Randomisierte Algorithmen für Optimierungsprobleme
SkriptJ. Hromkovic: Randomisierte Algorithmen, Teubner 2004.

J.Hromkovic: Design and Analysis of Randomized Algorithms. Springer 2006.

J.Hromkovic: Algorithmics for Hard Problems, Springer 2004.
LiteraturJ. Hromkovic: Randomisierte Algorithmen, Teubner 2004.

J.Hromkovic: Design and Analysis of Randomized Algorithms. Springer 2006.

J.Hromkovic: Algorithmics for Hard Problems, Springer 2004.
Freie Wahlfächer
Den Studierenden steht das gesamte Lehrangebot auf Masterl Level der ETH Zürich, der EPF Lausanne und der Universität Zürich zur individuellen Auswahl offen. Lerneinheiten der übrigen Schweizer Universitäten können - nur nach vorgängiger Genehmigung durch den Studiendelegierten - ebenfalls gewählt werden.

Weitere Details entnehmen Sie bitte Art. 31 des Studienreglementes 2009 für den Master-Studiengang Informatik.
Industriepraktikum
NummerTitelTypECTSUmfangDozierende
252-0700-00LIndustriepraktikum Information Belegung eingeschränkt - Details anzeigen
Nur für MSc Informatik.
W0 KPexterne Veranstalter
KurzbeschreibungIndustriepraktikum in einem Informatikbetrieb, welcher vom Departement Informatik als Praktikumsfirma anerkannt ist. Mindestens 10 Wochen Vollzeitbeschäftigung.
LernzielDas Ziel der mindestens 10- wöchigen Praxis ist es, Studierenden die industriellen Arbeitsumgebungen näher zu bringen. Während dieser Zeit bietet sich ihnen die Gelegenheit, in aktuelle Projekte der Gastinstitution involviert zu werden.
Voraussetzungen / BesonderesVor Beginn des Industriepraktikums muss die Aufgabenstellung zur Bewilligung vorgelegt werden. Nach Abschluss wird eine Arbeitsbestätigung verlangt.
Pflichtwahlfach Geistes-, Sozial- und Staatswissenschaften
» siehe Studiengang GESS-Pflichtwahlfächer
Master-Arbeit
NummerTitelTypECTSUmfangDozierende
263-0800-00LMaster's Thesis Information Belegung eingeschränkt - Details anzeigen
Zur Master-Arbeit wird nur zugelassen, wer:
a. das Bachelor-Studium erfolgreich abgeschlossen hat;
b. allfällige Auflagen für die Zulassung zum Master-Studiengang erfüllt hat;
c. in der Kategorie "Vertiefungsübergreifende Fächer" sind 12 KP;
d. und in der Kategorie "Vertiefungsfächer" sind 26 KP erarbeitet.
O30 KP64DProfessor/innen
KurzbeschreibungSelbständige Bearbeitung eines Informatik-Projekts unter der Leitung eines/einer Informatik-Professors/-Professorin. Dauer: 6 Monate.
LernzielSelbständig, strukturiert und wissenschaftlich zu arbeiten unter der Leitung eines/einer Informatik Professors/Professorin.
  • Erste Seite Vorherige Seite Seite  4  von  4     Alle