Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Search result: Catalogue data in Autumn Semester 2018

Computational Biology and Bioinformatics Master Information
More informations at: https://www.cbb.ethz.ch/
Course Units for Additional Admission Requirements
The courses below are only available for MSc students with additional requirements.
NumberTitleTypeECTSHoursLecturers
252-0835-AALComputer Science I Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-4 credits9RF. O. Friedrich
AbstractThe course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Teached language is C++. No programming experience is required.
ObjectivePrimary educational objective is to learn programming with C++. When successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the secenes" when a program is translated and executed.
Secondary goals are an algorithmic computational thinking, undestanding the possibilities and limits of programming and to impart the way of thinking of a computer scientist.
ContentThe course covers fundamental data types, expressions and statements, (Limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientiation deals with classes, inheritance and polymorphy, simple dynamic data types are introduced as examples.
In general, the concepts provided in the course are motivated and illustrated with algorithms and applications.
LiteratureBjarne Stroustrup: Programming:Principles and Practice Using C++, Addison-Wesley, 2014
Stephen Prata: C++ Primer Plus, Sixth Edition, Addison Wesley, 2012
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000
Bjarne Stroustrup: The C++ Programming Language (4th Edition) Addison-Wesley, 2013
Bjarne Stroustrup: The Design and Evolution of C++, Addison-Wesley, 1994
406-0603-AALStochastics (Probability and Statistics)
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-4 credits9RM. Kalisch
AbstractIntroduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.
ObjectiveThe objective of this course is to build a solid fundament in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".
ContentFrom "Statistics for research" (online)
Ch 1: The Role of Statistics
Ch 2: Populations, Samples, and Probability Distributions
Ch 3: Binomial Distributions
Ch 6: Sampling Distribution of Averages
Ch 7: Normal Distributions
Ch 8: Student's t Distribution
Ch 9: Distributions of Two Variables

From "Introductory Statistics with R (online)"
Ch 1: Basics
Ch 2: The R Environment
Ch 3: Probability and distributions
Ch 4: Descriptive statistics and tables
Ch 5: One- and two-sample tests
Ch 6: Regression and correlation
Literature- "Statistics for research" by S. Dowdy et. al. (3rd
edition); Print ISBN: 9780471267355; Online ISBN: 9780471477433; DOI:
10.1002/0471477435
From within the ETH, this book is freely available online under:
http://onlinelibrary.wiley.com/book/10.1002/0471477435

- "Introductory Statistics with R" by Peter Dalgaard; ISBN
978-0-387-79053-4; DOI: 10.1007/978-0-387-79054-1
From within the ETH, this book is freely available online under:
http://www.springerlink.com/content/m17578/
227-0945-00LCell and Molecular Biology for Engineers I
This course is part I of a two-semester course.
W3 credits2GC. Frei
AbstractThe course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.
ObjectiveAfter completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.
ContentLectures will include the following topics (part I and II): DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells.

In addition, 4 journal clubs will be held, where recent publications will be discussed (2 journal clubs in part I and 2 journal clubs in part II). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 40% for the final grade.
Lecture notesScripts of all lectures will be available.
Literature"Molecular Biology of the Cell" (6th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter.
  • First page Previous page Page  5  of  5     All