Search result: Catalogue data in Autumn Semester 2016

Health Sciences and Technology Master Information
Major in Neurosciences
Elective Courses II
376-0815-00LWriting your Master's Thesis: Natural Sciences and Engineering C1-C2 Restricted registration - show details
Does not take place this semester.
Your course regristration is only valid with a simultaneous online registration at the language center (

Number of participants limited to 15 (3 courses are available).

Attention: Registration is only possible from 12.9. (from 11.30h) - 15.9.2016
W2 credits2VS. Milligan
AbstractWe'll prepare you to produce your MSc thesis. You'll learn how to structure your thesis, write scientific English, and manage your writing efficiently. You'll receive detailed feedback on work in progress.
ObjectiveBy the end of the course students are able to plan, draft, and edit academic English papers and theses; structure and write clear texts in a style which is acceptable to their academic discourse community; manage the writing process efficiently; select formal vocabulary and use it in a generally accurate and correct manner; choose and use generally suitable grammatical structures, punctuation, and orthographic conventions, assess their own effectiveness as writers of academic English, and identify areas in which further development is needed.
ContentThe course covers the writing context; the writing process; structuring sentences, paragraphs, longer sections (such as introduction, methods, results, and discussion), and whole texts; presenting and integrating non-textual elements such as graphs and tables; and editing and correcting drafts and proofs. Each lesson comprises a mixture of elements, including specialist input, individual tasks, pairwork, and groupwork. Active participation is expected.
376-1177-00LHuman Factors IW2 credits2VM. Menozzi Jäckli, R. Huang, M. Siegrist
AbstractEvery day humans interact with various systems. Strategies of interaction, individual needs, physical & mental abilities, and system properties are important factors in controlling the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people's satisfaction & overall performance.
ObjectiveThe goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.
Content- Physiological, physical, and cognitive factors in sensation and perception
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance and well-being
- Human factors and ergonomics in system designs, product development and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks
Literature- Gavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS
376-1179-00LApplications of Cybernetics in ErgonomicsW1 credit1UM. Menozzi Jäckli, Y.‑Y. Hedinger Huang, R. Huang
AbstractCybernetics systems have been studied and applied in various research fields, such as applications in the ergonomics domain. Research interests include the man-machine interaction (MMI) topic which involving the performance in multi-model interactions, quantification in gestalt principles in product development; or the information processing matter.
ObjectiveTo learn and practice cybernetics principles in interface designs and product development.
Content- Fitt's law applied in manipulation tasks
- Hick-Hyman law applied in design of the driver assistance systems - Vigilance applied in quality inspection
- Accommodation/vergence crosslink function
- Cross-link models in neurobiology- the ocular motor control system
- Human performance in optimization of production lines
LiteratureGavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012)
376-1414-00LCurrent Topics in Brain Research (HS)W1 credit1.5KM. E. Schwab, F. Helmchen, S. Jessberger, I. Mansuy, further lecturers
AbstractDifferent national and international scientific guests are invited to present and discuss their actual scientific results.
ObjectiveTo exchange scientific knowledge and data and to promote communication and collaborations among researchers.
For students: Critical discussion of current research. Students aiming at getting a credit point for this colloquium choose one topic and write a critical essay on the presented research topic.
ContentDifferent scientific guests working in the field of molecular cognition, neurochemistry, neuromorphology and neurophysiology present their latest scientific results.
Lecture notesno handout
Literatureno literature
376-1504-00LPhysical Human Robot Interaction (pHRI) Restricted registration - show details
Number of participants limited to 26.
W4 credits2V + 2UR. Gassert, O. Lambercy
AbstractThis course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems.
ObjectiveThe objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems.

By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de- sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to:

1) identify critical human factors in physical human-robot interaction and use these to derive design requirements;
2) compare and select mechatronic components that optimally fulfill the defined design requirements;
3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components
into a functional system;
4) design control hardware and software and implement and
test human-interactive control strategies on the physical
5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics;
6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation.
ContentThis course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits.
Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (Link), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties.
Lecture notesWill be distributed through the document repository before the lectures.
LiteratureAbbott, J. and Okamura, A. (2005). Effects of position quantization and sampling rate on virtual-wall passivity. Robotics, IEEE Transactions on, 21(5):952 - 964.
Adams, R. and Hannaford, B. (1999). Stable haptic interaction with virtual environments. Robotics and Automation, IEEE Transactions on, 15(3):465 -474.
Buerger, S. and Hogan, N. (2007). Complementary stability and loop shaping for improved human ndash;robot interaction. Robotics, IEEE Transactions on, 23(2):232 -244.
Burdea, G. and Brooks, F. (1996). Force and touch feedback for virtual reality. John Wiley & Sons New York NY.
Colgate, J. and Brown, J. (1994). Factors affecting the z-width of a haptic display. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages 3205 -3210 vol.4.
Diolaiti, N., Niemeyer, G., Barbagli, F., and Salisbury, J. (2006). Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. Robotics, IEEE Transactions on, 22(2):256 -268.
Gillespie, R. and Cutkosky, M. (1996). Stable user-specific haptic rendering of the virtual wall. In Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, volume 58, pages 397-406.
Hannaford, B. and Ryu, J.-H. (2002). Time-domain passivity control of haptic interfaces. Robotics and Automation, IEEE Transactions on, 18(1):1 -10.
Hashtrudi-Zaad, K. and Salcudean, S. (2001). Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. The International Journal of Robotics Research, 20(6):419.
Hayward, V. and Astley, O. (1996). Performance measures for haptic interfaces. In ROBOTICS RESEARCH-INTERNATIONAL SYMPOSIUM-, volume 7, pages 195-206. Citeseer.
Hayward, V. and Maclean, K. (2007). Do it yourself haptics: part i. Robotics Automation Magazine, IEEE, 14(4):88 -104.
Leskovsky, P., Harders, M., and Szeekely, G. (2006). Assessing the fidelity of haptically rendered deformable objects. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pages 19 - 25.
MacLean, K. and Hayward, V. (2008). Do it yourself haptics: Part ii [tutorial]. Robotics Automation Magazine, IEEE, 15(1):104 -119.
Mahvash, M. and Hayward, V. (2003). Passivity-based high-fidelity haptic rendering of contact. In Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, volume 3, pages 3722 - 3728 vol.3.
Mehling, J., Colgate, J., and Peshkin, M. (2005). Increasing the impedance range of a haptic display by adding electrical damping. In Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 257 - 262.
Okamura, A., Richard, C., and Cutkosky, M. (2002). Feeling is believing: Using a force-feedback joystick to teach dynamic systems. JOURNAL OF ENGINEERING EDUCATION-WASHINGTON-, 91(3):345-350.
O'Malley, M. and Goldfarb, M. (2004). The effect of virtual surface stiffness on the haptic perception of detail. Mechatronics, IEEE/ASME Transactions on, 9(2):448 -454.
Richard, C. and Cutkosky, M. (2000). The effects of real and computer generated friction on human performance in a targeting task. In Proceedings of the ASME Dynamic Systems and Control Division, volume 69, page 2.
Salisbury, K., Conti, F., and Barbagli, F. (2004). Haptic rendering: Introductory concepts. Computer Graphics and Applications, IEEE, 24(2):24-32.
Weir, D., Colgate, J., and Peshkin, M. (2008). Measuring and increasing z-width with active electrical damping. In Haptic interfaces for virtual environment and teleoperator systems, 2008. haptics 2008. symposium on, pages 169 -175.
Yasrebi, N. and Constantinescu, D. (2008). Extending the z-width of a haptic device using acceleration feedback. Haptics: Perception, Devices and Scenarios, pages 157-162.
Prerequisites / NoticeNotice:
The registration is limited to 26 students
There are 4 credit points for this lecture.
The lecture will be held in English.
The students are expected to have basic control knowledge from previous classes.
551-0317-00LImmunology I Information W3 credits2VA. Oxenius, M. Kopf
AbstractIntroduction into structural and functional aspects of the immune system.
Basic knowledge of the mechanisms and the regulation of an immune response.
ObjectiveIntroduction into structural and functional aspects of the immune system.
Basic knowledge of the mechanisms and the regulation of an immune response.
Content- Introduction and historical background
- Innate and adaptive immunity, Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histoincompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions
Lecture notesElectronic access to the documentation will be provided. The link can be found at "Lernmaterialien"
Literature- Kuby, Immunology, 7th edition, Freemen + Co., New York, 2009
Prerequisites / NoticeImmunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung".
551-0319-00LCellular Biochemistry (Part I) Information W3 credits2VU. Kutay, R. I. Enchev, B. Kornmann, M. Peter, I. Zemp, further lecturers
AbstractConcepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.
ObjectiveThe full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry.
The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.
ContentStructural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes.
Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation of gene expression.
Lecture notesScripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (
LiteratureRecommended supplementary literature (review articles and selected primary literature) will be provided during the course.
Prerequisites / NoticeTo attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.
551-1145-00LViral and non-Viral Vectors for Human Gene-Therapy - from Pathogens to Safe Medical Applications
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: BIO708

Mind the enrolment deadlines at UZH:
W2 credits3VUniversity lecturers
AbstractBasic aspects of virology, the viral mechanisms for transfer of genetic material into cells, different vector-systems and target cells, animal models, specific applications for inborn diseases of the immune system and of metabolism, adverse effects, and new developments of vector systems will be taught.
ObjectiveKnowledge of important viral and non-viral vector systems.
Knowledge of application in human diseases.
Knowledge of limiting factors.
752-4009-00LMolecular Biology of Foodborne PathogensW3 credits2VM. Loessner, M. Schuppler
AbstractThe course offers detailed information on selected foodborne pathogens and toxin producing organisms; the focus lies on relevant molecular biological aspects of pathogenicity and virulence, as well as on the occurrence and survival of these organisms in foods.
ObjectiveDetailed and current status of research and insights into the molecular basis of foodborne diseases, with focus on interactions of the microorganism or the toxins they produce with the human system. Understanding the relationship between specific types of food and the associated pathogens and microbial risks. Another focus lies on the currently available methods and techniques useful for the various purposes, i.e., detection, differentiation (typing), and antimicrobial agents.
ContentMolecular biology of infectious foodborne pathogens (Listeria, Vibrio, E. coli, Campylobacter, etc) and toxin-producing organisms (Bacillus, Clostridium, Staphylococcus). How and under which conditions will toxins and virulence factors be produced, and how do they work? How is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment ? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages in microbial pathogenicity will be highlighted, in addition to various applications of bacteriophage for both diagnsotics and antimicrobial intervention.
Lecture notesElectronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.
LiteratureRecommendations will be given in the first lecture
Prerequisites / NoticeLectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), with no break !
752-6403-00LNutrition and PerformanceW2 credits2VS. Mettler, M. B. Zimmermann
AbstractThe course introduces basic concepts of the interaction between nutrition and exercise and cognitive performance.
ObjectiveTo understand the potential effects of nutrition on exercise performance, with a focus on concepts and principles of nutrition before, during and after exercise.
ContentThe course will cover elementary aspects of sports nutrition physiology, including carbohydrate, glycogen, fat, protein and energy metabolism. A main focus will be to understand nutritional aspects before exercise to be prepared for intensive exercise bouts, how exercise performance can be supported by nutrition during exercise and how recovery can be assisted by nutrition after exercise.
Although this is a scientific course, it is a goal of the course to translate basic sports nutrition science into practical sports nutrition examples.
Lecture notesLecture slides and required handouts will be available on the ETH website.
LiteratureInformation on further reading will be announced during the lecture. There will be some mandatory as well as voluntary readings.
Prerequisites / NoticeGeneral knowledge about nutrition, human biology, physiology and biochemistry is a prerequisite for this course. The course builds on basic nutrition and biochemistry knowledge to address exercise and performance related aspects of nutrition.

The course is designed for 3rd year Bachelor students, Master students and postgraduate students (MAS/CAS).

Language: English

It is strongly recommended to attend the lectures. The lecture (including the handouts) is not designed for distance education.
Practical Training and Semester Project
Practical Training and Semesterproject only for majors below-mentioned:
-Human Movement Science and Sport
-Health Technologies
-Molecular Health Sciences
376-2110-00LInternship 12 Weeks (Research or Job Oriented) Restricted registration - show details W15 credits34PProfessors
AbstractPractical Training Internships are either research-oriented for exercising scientific (laboratory) methods or job-related for giving insight into the future world of work (industry, services, school).
ObjectiveStudents should exercise scientific working and/or get realistic insights into future jobs.
Prerequisites / NoticeThis version of internships lasts for at least 12 weeks full time equivalent.
376-2111-00LInternship 8 Weeks (Research or Job Oriented) Restricted registration - show details W10 credits23PProfessors
AbstractPractical Training Internships are either research-oriented for exercising scientific (laboratory) methods or job-related for giving insight into the future world of work (industry, services, school).
ObjectiveStudents should exercise scientific working and/or get realistic insights into future jobs.
Prerequisites / NoticeThis version of internships lasts for at least 8 weeks full time equivalent.
376-2112-00LInternship 4 Weeks (Research or Job Oriented) Restricted registration - show details W5 credits11PProfessors
AbstractPractical Training Internships are either research-oriented for exercising scientific (laboratory) methods or job-related for giving insight into the future world of work (industry, services, school).
ObjectiveStudents should exercise scientific working and/or get realistic insights into future jobs.
Prerequisites / NoticeThis version of internships lasts for at least 4 weeks full time equivalent.
GESS Science in Perspective
» Recommended Science in Perspective (Type B) for D-HEST.
» see Science in Perspective:Type A: Enhancement of Reflection Capability
» see Science in Perspective: Language Courses ETH/UZH
Research Internship
376-2100-00LResearch Internship Restricted registration - show details O15 credits36AProfessors
Abstract12-week internship intended for exercising (independent) scientific working.
ObjectiveStudents shall exercise scientific working as preparation for their master thesis.
Prerequisites / NoticeThe Research Internship lasts for at least 12 weeks full time equivalent. It can be combined with the Master Thesis.
Master's Thesis
376-2000-00LMaster's Thesis Restricted registration - show details
Only students fulfilling the following criteria can start with their master thesis:
a. successful completion of the bachelor programme;
b. fulfillment of any additional requirements necessary to gain admission to the master programme.
O30 credits71DSupervisors
Abstract6-months research study with topics from the chosen major within the field of Health Sciences and Technology. In general, it includes the study of existing literature, the specification of the research question, the choice of the methodological approach, the collection, analysis and interpretation of data, and the written and oral reporting of the findings.
ObjectiveThe students shall demonstrate their ability to carry out a structured, scientific piece of work independently.
Prerequisites / NoticeThe Master Thesis can only be started after the Bachelor Degree was obtained and/or master admission requirements have been fulfilled.
Course Units for Additional Admission Requirements
The courses below are only for MSc students with additional admission requirements.
406-0253-AALMathematics I & II Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-13 credits28RA. Cannas da Silva
AbstractMathematics I covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations.
Main focus of Mathematics II: multivariable calculus and partial differential equations.
ObjectiveMathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.
Content1. Linear Algebra and Complex Numbers:
systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra.

2. Single-Variable Calculus:
review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals.

3. Ordinary Differential Equations:
separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems.

4. Multivariable Differential Calculus:
functions of several variables, partial differentiation, curves and surfaces in space, scalar and vector fields, gradient, curl and divergence.

5. Multivariable Integral Calculus:
multiple integrals, line and surface integrals, work and flow, Green, Gauss and Stokes theorems, applications.

6. Partial Differential Equations:
separation of variables, Fourier series, heat equation, wave equation, Laplace equation, Fourier transform.
Literature- Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall).
- Thomas, G. B.: Thomas' Calculus, Part 1 - Early Transcendentals (Pearson Addison-Wesley).
- Thomas, G. B.: Thomas' Calculus, Parts 2 (Pearson Addison-Wesley).
- Kreyszig, E.: Advanced Engineering Mathematics (John Wiley & Sons).
Prerequisites / NoticePrerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative.

Tuesdays and Wednesdays 17-19h, in Room HG E 41.
376-0203-AALMovement and Sport Biomechanics
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course!
E-4 credits3RS. Lorenzetti, B. Taylor
AbstractLearning to view the human body as a (bio-) mechanical system. Making the connections between everyday movements and sports activity with injury, discomfort, prevention and rehabilitation.
Objective"Students are able to describe the human body as a mechanical system.
They analyse and describe human movement according to the laws of mechanics."
ContentMovement- and sports biomechanics deals with the attributes of the human body and their link to mechanics. The course includes topics such as functional anatomy, biomechanics of daily activities (gait, running, etc.) and looks at movement in sport from a mechanical point of view. Furthermore, simple reflections on the loading analysis of joints in various situations are discussed. Additionally, questions covering the statics and dynamics of rigid bodies, and inverse dynamics, relevant to biomechanics are investigated.
  • First page Previous page Page  7  of  8 Next page Last page     All