Heini Wernli: Catalogue data in Autumn Semester 2023

Award: The Golden Owl
Name Prof. Dr. Heini Wernli
FieldAtmosperic Dynamics
Address
Institut für Atmosphäre und Klima
ETH Zürich, CHN M 12.1
Universitätstrasse 16
8092 Zürich
SWITZERLAND
Telephone+41 44 632 54 80
E-mailheini.wernli@env.ethz.ch
DepartmentEnvironmental Systems Science
RelationshipFull Professor

NumberTitleECTSHoursLecturers
061-0101-00LClimate / Water / Soil Information Restricted registration - show details 2 credits3GH. Joos, R. Kretzschmar, R. Weingartner, A. Carminati, S. Dötterl, M. G. Fellin, A. Frossard, T. Galí-Izard, N. Gruber, V. Picotti, S. Schemm, J. Schwaab, C. Steger, H. Wernli
AbstractLectures, exercises and excursions serve as an introduction to atmospheric sciences, soil science and hydrology. Students gain a broad vision of the cutting edge topics that are being researched and studied at the Department of Environmental Systems Science at ETH, Eawag, WSL a.o. This will be the base for a future dialog between the field of landscape architecture and the field of sciences.
Learning objectiveStudents acquire basic knowledge in atmospheric sciences, hydrology and soil science:
- Understanding basic chemical and physical processes in the atmosphere that influence weather and climate
- Fundamentals about the classification of soils, soil-forming processes, physical and chemical soil properties, soil biology and ecology, soil degradation and protection
- Knowledge of water balance, principles of integral water management and climatic factors in the field of hydrology

Students develop an understanding of the relevance of these topics in the field of landscape architecture. Temporal and physical scale, research methods, units of measurement, lexicon, modes of representation and critical literature form the framework for the joint discourse.
ContentThe course unit consists of the three courses "Climate", "Soil" and "Water", which are organized in modules.

Module 1 “Climate”, 25.–28.09.2023
- Atmospheric dynamics: weather conditions, precipitation formation, weather forecast
- Carbon Cycle: atmospheric CO2 concentrations and its interaction with the physical climate system
- Land-climate dynamics: interaction between the land surface and the climate system
- Hydrology and water cycle: extreme precipitation, influence of climate change on the cryosphere
- Introduction to geology: formation of rocks, geologic times, structural geology


Module 2 “Soil”, 2.10.–5.10.23
- Introduction to soils: definition, function, formation, classification and mapping
- Soil physics: soil texture, soil structure, soil water potentials, hydraulic conductivity
- Soil chemistry and fertility: clay minerals and oxides, cation exange capacity, soil pH, essential plant nutrients
- Soil biology and ecology: soil fauna and microflora, fungi, bacteria, food web, organic matter
- Soil degradation and threats to soil resources: erosion, compactation, sealing, contamination, salinization


Module 3 “Water”, 09.10.–12.10.2023

Basics:
- Water supply: water balance, groundwater, water quality (water protection)
- River restoration
- Flooding, evapotranspiration/cooling of landscapes
- Hydropower (everything is managed - lake levels, water flows, pumping) - hydrology in the anthropocene
- Water management and storage
Lecture notesCourse material will be provided.
LiteratureThe course material includes a reading list.
Prerequisites / NoticeThe courses "Climate", "Water" and "Soil" are organized with the Fundamental Studio I as joint one-week modules. The weekly schedules will be provided with the course materials.

Module 1 "Climate", 25.–28.09.2023
Module 2 "Soil", 2.10.–5.10.23
Module 3 "Water", 09.10.–12.10.2023

- The courses are held in English
- The written session examination covers all three courses "Climate", "Soil" and "Water".
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection assessed
151-8007-00LUrban Physics Information Restricted registration - show details 3 credits3GY. Zhao, D. W. Brunner, A. Rubin, C. Steger, D. A. Strebel, H. Wernli, J. M. Wunderli
AbstractUrban physics: wind, wind comfort, pollutant dispersion, natural ventilation, driving rain, heat islands, climate change and weather conditions, urban acoustics and energy use in the urban context.
Learning objective- Basic knowledge of the global climate and the local microclimate around buildings
- Impact of urban environment on wind, ventilation, rain, pollutants, acoustics and energy, and their relation to comfort, durability, air quality and energy demand
- Application of urban physics concepts in urban design
Content- Climate Change. The Global Picture: global energy balance, global climate models, the IPCC process. Towards regional climate scenarios: role of spatial resolution, overview of approaches, hydrostatic RCMs, cloud-resolving RCMs
- Urban micro climate and comfort: urban heat island effect, wind flow and radiation in the built environment, convective heat transport modelling, heat balance and ventilation of urban spaces - impact of morphology, outdoor wind comfort, outdoor thermal comfort,
- Urban energy and urban design. Energy performance of building quarters and cities, decentralized urban energy production and storage technologies, district heating networks, optimization of energy consumption at district level, effect of the micro climate, urban heat islands, and climate change on the energy performance of buildings and building blocks.
- Wind driving rain (WDR): WDR phenomena, WDR experimental and modeling, wind blocking effect, applications and moisture durability
- Pollutant dispersion. pollutant cycle : emission, transport and deposition, air quality
- Urban acoustics. noise propagation through the urban environment, meteorological effects, urban acoustic modeling, noise reduction measures, urban vegetation
- Practical exercise on climatic data collection and analyze
Lecture notesThe course lectures and material are provided online via Moodle.
Prerequisites / NoticeFor MIBS Master students 151-8011-ooL Building Phyics Theory & Application is a pre-requisit for this course or instructor permission. For others no prior knowledge is required.
651-4095-01LColloquium Atmosphere and Climate 1 Information Restricted registration - show details 1 credit1KH. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Jnglin Wills, R. Knutti, U. Lohmann, C. Mohr, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Learning objectiveThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
651-4095-02LColloquium Atmosphere and Climate 2 Information Restricted registration - show details 1 credit1KH. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Jnglin Wills, R. Knutti, U. Lohmann, C. Mohr, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Learning objectiveThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
651-4095-03LColloquium Atmosphere and Climate 3 Information Restricted registration - show details 1 credit1KH. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Jnglin Wills, R. Knutti, U. Lohmann, C. Mohr, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Learning objectiveThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
701-0071-AALMathematics III: Systems Analysis
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
4 credits9RR. Knutti, H. Wernli
AbstractThe objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.
Learning objectiveLearning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.
ContentIntroduction to principles of models; one-dimensional linear box models; multi-dimensional linear box models; nonlinear box models; models in space and time
Lecture notesTeaching material: book (see literature).
LiteratureImboden, D.S. and S. Pfenninger (2013) Introduction to Systems Analysis: Mathematically Modeling Natural Systems. Berlin Heidelberg: Springer Verlag.

http://link.springer.com/book/10.1007%2F978-3-642-30639-6
701-0071-00LMathematics III: Systems Analysis4 credits2V + 1UC. Brunner, R. Knutti, S. Schemm, H. Wernli
AbstractThe objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.
Learning objectiveLearning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.
Contenthttps://iac.ethz.ch/edu/courses/bachelor/vorbereitung/systemanalyse.html
Lecture notesOverhead slides will be made available through the course website.
LiteratureImboden, D.S. and S. Pfenninger (2013) Introduction to Systems Analysis: Mathematically Modeling Natural Systems. Berlin Heidelberg: Springer Verlag.

http://link.springer.com/book/10.1007%2F978-3-642-30639-6
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Personal CompetenciesCreative Thinkingfostered
Critical Thinkingfostered
701-0479-00LEnvironmental Fluid Dynamics Information 3 credits2GH. Wernli, M. Röthlisberger
AbstractThis course covers the basic physical concepts and mathematical equations used to describe environmental fluid systems on the rotating Earth. Fundamental concepts (e.g. vorticity dynamics and waves) are formally introduced, applied quantitatively and illustrated using examples. Exercises help to deepen knowledge of the material.
Learning objectiveStudents are able
- to name the basics, concepts and methods of environmental fluid dynamics.
- to understand and discuss the components of the basic physical equations
- to mathematically solve basic equations for simple problems of environmental fluid dynamics.
The competencies of process understanding and system understanding are taught, applied and examined.
ContentBasic physial terminology and mathematical laws:
Continuum hypothesis, forces, constitutive laws, state equations and basic principles of thermodynamics, kinematics, laws of mass and momentum on rotating earth.
Concepts and illustrative flow sytems: vorticity dynamics, boundary layers, instability, turbulence - with respect to environmental fluid systems.
Scale analysis: dimensionles variables and dynamical similarity, simplification of the fluid system, e.g. shallow water assumption, geostrophic flow.
Waves in environmental fluid systems.
Lecture notesIn english language
LiteratureWill be presnted in class.
See also: web-site.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
701-1221-00LDynamics of Large-Scale Atmospheric Flow Information 4 credits2V + 1UH. Wernli, J. Riboldi
AbstractThis lecture course is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostropic dynamics, potential vorticity, Rossby waves, baroclinic instability). The fundamental concepts are formally introduced, quantitatively applied and illustrated with examples from the real atmosphere. Exercises (quantitative and qualitative) form an essential part of the course.
Learning objectiveUnderstanding of dynamic processes of large-scale atmospheric flow and their mathematical-physical formulation.
ContentDynamical Meteorology is concerned with the dynamical processes of the
earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.
Lecture notesDynamics of large-scale atmospheric flow
Literature- Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004,
- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997
Prerequisites / NoticePhysics I, II, Environmental Fluid Dynamics
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Social CompetenciesCooperation and Teamworkfostered
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed