Yves Barral: Catalogue data in Spring Semester 2012

Name Prof. Dr. Yves Barral
FieldBiochemie
Address
Institut für Biochemie
ETH Zürich, HPM D 8.3
Otto-Stern-Weg 3
8093 Zürich
SWITZERLAND
Telephone+41 44 632 06 78
Fax+41 44 632 15 91
E-mailyves.barral@bc.biol.ethz.ch
DepartmentBiology
RelationshipFull Professor

NumberTitleECTSHoursLecturers
529-0492-00LCIMST Microscopy & Nanoscopy Seminar1 credit2SY. Barral
AbstractThe seminar series introduces the student to advances in microscopy and nanoscopy with emphasis on light microscopy, electron microscopy, and x-ray microscopy. Both methodological and technological progress as well as applications are discussed.
Learning objective
551-0103-AALFundamentals of Biology IIA: Cell Biology Information Restricted registration - show details
Enrolment only for MSc students who need this course as additional requirement.
5 credits11RU. Kutay, Y. Barral, E. Hafen, G. Schertler, U. Suter, S. Werner
AbstractThe goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.
Learning objectiveThe goal of this course is to provide students with a wide general understanding cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.
ContentThe focus is animal cells and the development of multicellular organisms with a clear emphasis on the molecular basis of cellular structures and phenomena. The topics include biological membranes, the cytoskeleton, protein sorting, energy metabolism, cell cycle and division, viruses, extracellular matrix, cell signaling, embryonic development and cancer research.
LiteratureAlberts et al. ‘Molecular Biology of the Cell’ Fifth edition, 2008 ISBN 978-0-8153-4105-5 (hard cover) and ISBN 978-0-8153-4106-2 (paperback).

Topic/Lecturer/Chapter/Pages: Introduction to Cell Biology/Gebhard Schertler/1+2+3+4/1-193; Cellular compartments/Gebhard Schertler/12/695-748; Membrane lipids/Gebhard Schertler/10/617-629; Working with cells/Ulrike Kutay/9/579-613; Mitochondria/Ulrike Kutay/12+14/695-703/713-723/815-818/856-860; Chloroplasts, peroxisomes/Ulrike Kutay/12+14/695-703/713-723/840-844/856-860; Structure and dynamics of the nucleus/Ulrike Kutay/6+12/362-366/704-706/710-712; Membrane proteins/Gebhard Schertler/10/629-650; Working with membranes/Gebhard Schertler/9/579-615; Nuclear transport of proteins/Ulrike Kutay/12/706-711; RNA processing and nuclear export/Ulrike Kutay/6/345-353/357-366/369; Endoplasmic reticulum/Ulrike Kutay/12/723-745; Vesicular transport/Ulrike Kutay/13/749-766; From the ER through the Golgi/Ulrike Kutay/13/766-779; From the TGN to Lysosomes and the plasma membrane/Ulrike Kutay/13/779-787/799-809; The plasma membrane and endocytosis/Ulrike Kutay/13/787-799; Introduction to the cytoskeleton/Ulrike Kutay/16/965-1035; Microtubules/Ulrike Kutay/16/965-1035; Actin/Muscle/Ulrike Kutay/16/965-1035; Cell polarization and migration/Yves Barral/16/1036-1052; Introduction to the cell cycle/Yves Barral/17/1053-1070; MPF and the cell cycle control machinery/Yves Barral/17/1053-1070; Mechanisms of chromosome segregation/Yves Barral/17/1070-1090; Cell division/Yves Barral/17/1090-1101; Apoptosis/Yves Barral/18/1115-1127; Membrane transport passive and active/Sabine Werner/11/651-667; Ion channels, action potential/Sabine Werner/11/667-687; General principles of signalling/Sabine Werner/15/879-903; Nuclear receptors, G-protein coupled receptors/Sabine Werner/15/879-921; Cell signalling; G-protein coupled receptors/Sabine Werner/15/904-921; Cell signalling; Receptor tyrosine kinases/Sabine Werner/15/921-938; Cell signalling; Tyrosine kinase associated receptors/Sabine Werner/15/921-938; Cell signalling; Receptor serine threonine kinases/Sabine Werner/15/939-944; Signalling through proteolysis/Sabine Werner/15/946-954; Cancer Biology/Sabine Werner/20/1205-1267; Cell-Cell Interactions/Ueli Suter/19/1131-1195; Extracellular Matrix/Ueli Suter/19/1131-1195; Regeneration / Stem Cells/Ueli Suter/23/1417-1484; Germ Cells and Sex Determination/Ernst Hafen/21/1269-1304; Development/Ernst Hafen/22/1305-1417
Prerequisites / Noticenone
551-0320-00LCellular Biochemistry (Part II) Information 3 credits2VY. Barral, R. Kroschewski, A. E. Smith
AbstractMolecular mechanisms and concepts underlying the biochemistry of the cell, providing advanced insights into the structural and functional details of individual cell components, and the complex regulation of their interactions. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes.
Learning objectiveThe full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterization of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry.
The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain how different molecules and signaling pathways can be integrated during complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, and cell division. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer or during cellular infection.
ContentSpatial and temporal integration of different molecules and signaling pathways into global cellular processes, such as cell division, cell infection and cell motility. Emphasis is also put on the understanding of pathologies associated with defective cell physiology, such as cancer or during cellular infection.
LiteratureRecommended supplementary literature (review articles and selected primary literature) will be provided during the course.
Prerequisites / NoticeTo attend this course the students must have a solid basic knowledge in chemistry, biochemistry, cell biology and general biology. Biology students have in general already attended the first part of the "Cellular Biochemistry" concept course (551-0319-00). The course will be taught in English.
In addition, the course will be based on a blended-learning scenario, where frontal lectures will be complemented with carefully chosen web-based teaching elements that students access through the OLAT learning platform - https://www.olat.uzh.ch/olat/dmz/
551-0339-00LMolecular Mechanisms of Cell Division Information Restricted registration - show details 6 credits7GP. Meraldi, Y. Barral, M. de Medina Redondo, U. Kutay, M. Peter
AbstractApplication of the current strategies to study complex and highly regulated cellular processes such as cell division.
Learning objectiveThe students learn to evaluate and to apply the current strategies to study complex and highly regulated cellular precesses such as cell division.
ContentDuring this Block-Course, the students will learn to (1) describe the main regulators and the mechanics of cell division and growth, (2) perform standard lab techniques and quantitate mitosis, (3) evaluate and compare experimental strategies and model systems, (4) independently search and critically evaluate scientific literature on a specific problem and present it in a seminar, and (5) formulate scientific concepts (preparation and presentation of a poster).
Students will work in small groups in individual labs on one research project (8 full days of practical work; every group of students will stay in the same lab during the entire course). The projects are close to the actual research carried out in the participating research groups, but with a clear connection to the subject of the course.
LiteratureDocumentation and recommended literature (review articles and selected primary literature) will be provided during the course.
Prerequisites / NoticeThis course will be taught in english.
551-1316-00LCIMST Interdisciplinary Summer School on Bio-Medical Imaging Information Restricted registration - show details 3 credits6GR. Kroschewski, S. M. Ametamey, Y. Barral, G. Csúcs, F. Helmchen, P. Horvath, T. Ishikawa, B. Kornmann, P. Koumoutsakos, S. Kozerke, M. Peter, M. Rudin, R. Schibli, B. Schuler, M. Stampanoni, G. Székely, R. A. Wepf, M. P. Wolf
AbstractThe school will discuss recent progress and current challenges in biological and medical imaging. Topics include computer aided image analysis and modeling. The students will have theoretical training in the form of lectures and practical sessions (either hands-on lab work or lab demonstrations).
Learning objectiveThe students know about the possibilities and limitations of a wide range of modern imaging methods and can propose suitable methods for a given imaging problem.
ContentThe CIMST (Center for Imaging Science and Technology, a Competence Center of ETH Zurich) summer school discusses recent progress and current challenges in biological and medical imaging. The students will have theoretical training in the form of lectures and practical sessions (either hands-on lab work or lab demonstrations). A specialization on medical or biological imaging will be offered. Some lectures will be given in parallel for life scientists and physical scientists.
Cutting edge techniques using a wide range of imaging mechanisms such as magnetic resonance, positron emission, infrared and optical microscopy, electron microscopy and x-ray imaging will be put in the context of selected biomedical problems. In particular, multimodal and multiscale imaging methods as well as supporting technologies such as computer aided imaging analysis and modeling will be discussed. The school aims to point out possibilities of the integration of different imaging methods.
Lecture notesNone
Prerequisites / NoticeWe plan to admit about 50 Master or PhD students with background in either biology, chemistry, mathematics, physics, computer or medical science or engineering (Zürich area and from abroad). The school will be taught in English.
Admission will be given via a selection process based on the curriculum vitae, a statement of purpose. For details of the program and the application procedure please consult http://www.cimst.ethz.ch/education/summer_school/12. The application deadline is May 28, 2012. A decision on whether your application is accepted or not will be given in June 2012. Only after a positive decision is received, you may sign in via my-studies in the course.