Atac Imamoglu: Catalogue data in Spring Semester 2023 |
Name | Prof. Dr. Atac Imamoglu |
Field | Quantum electronics |
Address | Institut für Quantenelektronik ETH Zürich, HPT G 12 Auguste-Piccard-Hof 1 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 45 70 |
iatac@ethz.ch | |
Department | Physics |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
402-0052-00L | Physics I | 4 credits | 2V + 2U | A. Imamoglu | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Physics I is an introduction to continuum mechanics, wave phenomena, and fundamental concepts of thermodynamics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After completing this course, students should be able to construct and apply simple models of dynamics in non-rigid materials. Students should also be able to identify and relate basic thermodynamic quantities in equilibrium systems given realistic constraints. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The lecture will discuss the following concepts: Waves - One dimensional wave equation - Plane waves, spherical waves in 2 and 3 dimensions - Elastic waves, sound velocity - Stationary waves, resonances - Propagation: interference and diffraction - Doppler effect Thermodynamics - Kinetic theory of gases, perfect gases - Conservation of energy, first principle - Second principle, thermal cycles - Entropy, thermodynamical and statistical interpretation - Thermal radiation and heat transfer. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The lecture notes will be distributed via the Moodle platform. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | P. A. Tipler and G. Mosca, "Physics for Scientists and Engineers" (6th edition) Chapters 14-20. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Technical Mechanics, Analysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0414-00L | Strongly Correlated Many-Body Systems: From Electrons to Ultracold Atoms to Photons Does not take place this semester. | 6 credits | 2V + 1U | A. Imamoglu, E. Demler | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course covers the physics of strongly correlated systems that emerge in diverse platforms, ranging from two-dimensional electrons, through ultracold atoms in atomic lattices, to photons. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal of the lecture is to prepare the students for research in strongly correlated systems currently investigated in vastly different physical platforms. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Feshbach resonances, Bose & Fermi polarons, Anderson impurity model and the s-d Hamiltonian, Kondo effect, quantum magnetism, cavity-QED, probing noise in strongly correlated systems, variational non-Gaussian approach to interacting many-body systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Hand-written lecture notes will be distributed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Knowledge of Quantum Mechanics at the level of QM II and exposure to Solid State Theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0444-00L | Dissipative Quantum Systems Does not take place this semester. | 6 credits | 2V + 1U | A. Imamoglu | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course builds up on the material covered in the Quantum Optics course. The emphasis will be on analysis of dissipative quantum systems and quantum optics in condensed-matter systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course aims to provide the knowledge necessary for pursuing advanced research in the field of Quantum Optics in condensed matter systems. Fundamental concepts and techniques of Quantum Optics will be linked to experimental research in interacting photonic systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Description of open quantum systems using master equation and quantum trajectories. Decoherence and quantum measurements. Dicke superradiance. Dissipative phase transitions. Signatures of electron-exciton and electron-electron interactions in optical response. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes will be provided | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | C. Cohen-Tannoudji et al., Atom-Photon-Interactions (recommended) Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (recommended) A collection of review articles (will be pointed out during the lecture) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Masters level quantum optics knowledge | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0551-00L | Laser Seminar | 0 credits | 1S | J. Faist, J. Home, A. Imamoglu, U. Keller, F. Merkt, H. J. Wörner | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Research colloquium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective |