Robert Riener: Katalogdaten im Frühjahrssemester 2023 |
Name | Herr Prof. Dr. Robert Riener |
Lehrgebiet | Sensomotorische Systeme |
Adresse | Professur f. Sensomotorische Syst. ETH Zürich, GLC G 20.1 Gloriastrasse 37/ 39 8092 Zürich SWITZERLAND |
robert.riener@hest.ethz.ch | |
Departement | Gesundheitswissenschaften und Technologie |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
376-0210-00L | Biomechatronics Primär für Gesundheitswissenschaften und Technologie Studierende ausgelegt. Die Biomechatronics Vorlesung ist nicht für Studierende geeignet, welche bereits die Vorlesung "Physical Human-Robot Interaction"(376-1504-00L) besucht haben, da sie ähnliche Themen abdeckt. Matlab Kenntnisse sind vorteilhaft -> online Tutorial http://www.imrtweb.ethz.ch/matlab/ | 4 KP | 3G | R. Riener, R. Gassert, N. Gerig, O. Lambercy | |
Kurzbeschreibung | Development of mechatronic systems (i.e. mechanics, electronics, computer science and system integration) with inspiration from biology and application in the living (human) organism. | ||||
Lernziel | The objective of this course is to give an introduction to the fundamentals of biomechatronics, through lectures on the underlying theoretical/mechatronics aspects and application fields. In the exercises, these concepts will be intensified and trained on the basis of specific examples. The course will guide students through the design and evaluation process of such systems, and highlight a number of applications. By the end of this course, you should understand the critical elements of biomechatronics and their interaction with biological systems, both in terms of engineering metrics and human factors. You will be able to apply the learned methods and principles to the design, improvement and evaluation of safe and efficient biomechatronics systems. | ||||
Inhalt | The course will cover the interdisciplinary elements of biomechatronics, ranging from human factors to sensor and actuator technologies, real-time signal processing, system kinematics and dynamics, modeling and simulation, controls and graphical rendering as well as safety/ethical aspects, and provide an overview of the diverse applications of biomechatronics technology. | ||||
Skript | Slides will be distributed through moodle before the lectures. | ||||
Literatur | Brooker, G. (2012). Introduction to Biomechatronics. SciTech Publishing. Riener, R., Harders, M. (2012) Virtual Reality in Medicine. Springer, London. | ||||
Voraussetzungen / Besonderes | None | ||||
376-1217-00L | Rehabilitation Engineering I: Motor Functions | 4 KP | 2V + 1U | R. Riener, C. E. Awai | |
Kurzbeschreibung | “Rehabilitation” is the (re)integration of an individual with a disability into society. Rehabilitation engineering is “the application of science and technology to ameliorate the handicaps of individuals with disability”. Such handicaps can be classified into motor, sensor, and cognitive disabilities. In general, one can distinguish orthotic and prosthetic methods to overcome these disabilities. | ||||
Lernziel | The goal of this course is to present classical and new technical principles as well as specific examples applied to compensate or enhance motor deficits. In the 1 h exercise the students will learn how to solve representative problems with computational methods applied to exoprosthetics, wheelchair dynamics, rehabilitation robotics and neuroprosthetics. | ||||
Inhalt | Modern methods rely more and more on the application of multi-modal and interactive techniques. Multi-modal means that visual, acoustical, tactile, and kinaesthetic sensor channels are exploited to display information to the patient. Interaction means that the exchange of information and energy occurs bi-directionally between the rehabilitation device and the human being. Thus, the device cooperates with the patient rather than imposing an inflexible strategy (e.g., movement) upon the patient. These principles are recurrent in modern technological tools to support rehabilitation, including prosthesis, orthoses, powered exoskeletons, powered wheelchairs, therapy robots and virtual reality systems. | ||||
Literatur | Books: Burdet, Etienne, David W. Franklin, and Theodore E. Milner. Human robotics: neuromechanics and motor control. MIT press, 2013. Krakauer, John W., and S. Thomas Carmichael. Broken movement: the neurobiology of motor recovery after stroke. MIT Press, 2017. Teodorescu, Horia-Nicolai L., and Lakhmi C. Jain, eds. Intelligent systems and technologies in rehabilitation engineering. CRC press, 2000. Winters, Jack M., and Patrick E. Crago, eds. Biomechanics and neural control of posture and movement. Springer Science & Business Media, 2012. Selected Journal Articles: Abbas, James J., and Robert Riener. "Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function." Neuromodulation: Technology at the Neural Interface 4.4 (2001): 187-195. Basalp, Ekin, Peter Wolf, and Laura Marchal-Crespo. "Haptic training: which types facilitate (re) learning of which motor task and for whom Answers by a review." IEEE Transactions on Haptics (2021). Calabrò, Rocco Salvatore, et al. "Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?." Neurological Sciences 37.4 (2016): 503-514. Cooper, R. (1993) Stability of a wheelchair controlled by a human. IEEE Transactions on Rehabilitation Engineering 1, pp. 193-206. Gassert, Roger, and Volker Dietz. "Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective." Journal of neuroengineering and rehabilitation 15.1 (2018): 1-15. Laver, Kate E., et al. "Virtual reality for stroke rehabilitation." Cochrane database of systematic reviews 11 (2017). Marquez-Chin, Cesar, and Milos R. Popovic. "Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review." Biomedical engineering online 19 (2020): 1-25. Miller, Larry E., Angela K. Zimmermann, and William G. Herbert. "Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis." Medical devices (Auckland, NZ) 9 (2016): 455. Raspopovic, Stanisa. "Advancing limb neural prostheses." Science 370.6514 (2020): 290-291. Riener, R. (2013) Rehabilitation Robotics. Foundations and Trends in Robotics, Vol. 3, nos. 1-2, pp. 1-137. Riener, R., Lünenburger, L., Maier, I. C., Colombo, G., & Dietz, V. (2010). Locomotor training in subjects with sensori-motor deficits: An overview of the robotic gait orthosis Lokomat. Journal of Healthcare Engineering, 1(2), 197-216. Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10. Sigrist, Roland, et al. "Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review." Psychonomic bulletin & review 20.1 (2013): 21-53. Xiloyannis, Michele, et al. "Soft Robotic Suits: State of the Art, Core Technologies, and Open Challenges." IEEE Transactions on Robotics (2021). | ||||
Voraussetzungen / Besonderes | Target Group: Students of higher semesters and PhD students of - D-MAVT, D-ITET, D-INFK - Biomedical Engineering - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome | ||||
376-1400-00L | Transfer of Technologies into Neurorehabilitation ![]() | 3 KP | 2V | P. Bruno, M. Altermatt, R. Riener, H. Van Hedel | |
Kurzbeschreibung | The course focuses on clinical as well as industrial aspects of advanced technologies and their transfer into neurorehabilitation from both theoretical and practical perspectives. The students will learn the basics of neurorehabilitation and the linkage to technologies, gain insight into the development within the medtech field and learn applications of technologies in clinical settings. | ||||
Lernziel | The students will: - Learn basics and principles of clinical neuroscience and neurorehabilitation. - Gain insight into the technical basics of advanced technologies and the transfer into product development processes. - Gain insight into the application, the development and integration of advanced technologies in clinical settings. This includes the advantages and limitations according to different pathologies and therapy goals. - Get the opportunity to test advanced technologies in practical settings. - Learn how to transfer theoretical concepts to actual settings in different working fields. | ||||
Inhalt | Main focus: - Neurobiological principles applied to the field of neurorehabilitation. - Clinical applications of advanced rehabilitation technologies. - Visit medical technology companies, rehabilitation centers and labs to gain deeper insight into the development, application and evaluation of advanced technologie | ||||
Skript | Teaching materials will be provided for the individual events and lectures. - Slides (pdf files) - Information sheets and flyers of the visited companies, labs and clinics |