Markus Rothacher: Catalogue data in Autumn Semester 2021

Award: The Golden Owl
Name Prof. em. Dr. Markus Rothacher
FieldMathematical and Physical Geodesy
Address
I. f. Geodäsie u. Photogrammetrie
ETH Zürich, HPV G 52
Robert-Gnehm-Weg 15
8093 Zürich
SWITZERLAND
Telephone+41 44 633 33 75
E-mailmarkus.rothacher@ethz.ch
DepartmentCivil, Environmental and Geomatic Engineering
RelationshipProfessor emeritus

NumberTitleECTSHoursLecturers
103-0126-AALGeodetic Reference Systems
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RM. Rothacher
AbstractFundamentals and theory of geodetic reference systems and frames. Introduction to current international systems as well as to systems for the Swiss national geodetic survey.
Learning objectiveProvision of fundamental knowledge and theory to get familiar with the applications of geodetic reference systems. Special emphasis will be placed on international global systems as well as on the systems of the Swiss national geodetic survey.
103-0184-AALHigher Geodesy
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
5 credits11RM. Rothacher
AbstractModern methods of Higher Geodesy. Basics of Shape of the Earth: Geoid determination and deflection of the vertical. Introduction into the most important topics: Satellite Geodesy and Navigation; Physical Geodesy and gravity field of the Earth; Astronomical Geodesy and Positioning; Mathematical Geodesy and basics of Geodynamics. Reference systems and applications in National and Global Geomatics.
Learning objectiveOverview over the entire spectrum of Higher Geodesy
103-0187-AALSatellite Geodesy
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
4 credits3RM. Rothacher
AbstractGPS, VLBI, SLR/LLR and satellite altimetry: Principles, instrumentation and observation equation. Modelling and estimation of station coordinates and station motion. Ionospheric and tropospheric refraction and estimation of atmospheric parameters. Equation of motion of the unperturbed and perturbed satellite orbit. Perturbation theory and orbit determination.
Learning objectiveUnderstanding the major observation techniques in space geodesy as modern methods applied in Earth system monitoring (geometry, rotation and gravity field of the Earth and the atmosphere), in national surveying and navigation.
ContentOverview of GPS, VLBI, Satellite and Lunar Laser Ranging (SLR/LLR), Satellite Radar Altimetry with the basic principles, the instruments and observation equations. Modelling of the station motions and the estimation of station coordinates. Basics of wave propagation in the atmosphere. Signal propagation in the ionosphere and troposphere for the different observation techniques and the determination of atmospheric parameters.
Equation of motion of the unperturbed and perturbed satellite orbit. Osculating and mean orbital elements. General and special perturbation theory and the determination of satellite orbits.
LiteratureScript M. Rothacher "Space Geodesy"
103-0187-01LSpace Geodesy4 credits3GM. Rothacher
AbstractGNSS, VLBI, SLR/LLR and satellite altimetry: Principles, instrumentation and observation equation. Modelling and estimation of station coordinates and station motion. Ionospheric and tropospheric refraction and estimation of atmospheric parameters. Equation of motion of the unperturbed and perturbed satellite orbit. Perturbation theory and orbit determination.
Learning objectiveUnderstanding the major observation techniques in space geodesy as modern methods applied in Earth system monitoring (geometry, rotation and gravity field of the Earth and the atmosphere), in national surveying and navigation.
ContentOverview of GNSS, Very Long Baseline Interferometry (VLBI), Satellite and Lunar Laser Ranging (SLR/LLR), Satellite Radar Altimetry with the basic principles, the instruments and observation equations. Modelling of the station motions and the estimation of station coordinates. Basics of wave propagation in the atmosphere. Signal propagation in the ionosphere and troposphere for the different observation techniques and the determination of atmospheric parameters.
Equation of motion of the unperturbed and perturbed satellite orbit. Osculating and mean orbital elements. General and special perturbation theory and the determination of satellite orbits.
Lecture notesScript M. Rothacher "Space Geodesy"
103-0187-02LSatellite Geodesy4 credits3GM. Rothacher
Abstract
Learning objective-Sicherheit im Umgang mit Koordinaten-, Referenz- und Zeitsystemen.
-Beherrschen der Ephemeridenrechnung für ungestörte Satellitenbahnen.
-Grundlegendes Verständnis der geodätischen Weltraumverfahren und deren Stärken und Schwächen.
-Kenntnis der wichtigsten Prozesse, die für Änderungen in den drei Pfeilern der Space Geodesy (der Geometrie, der Rotation und dem Schwerefeld der Erde) verantwortlich sind.
-Erkennen der Anwendungsmöglichkeiten der Space Geodesy für interdisziplinäre Aufgaben (System Erde).
Content-Koordinatensysteme, Transformationen
-Referenz- und Zeitsysteme
-Grundlagen Satellitenbahnen
-Weltraumverfahren: GNSS, VLBI, SLR, DORIS, Altimetrie
-Schwerefeldmissionen
-Kombination der Weltraumverfahren
-Drei Pfeiler der "Space Geodesy":
1. Geometrie der Erde und zeitliche Veränderungen - Erdrotation der 2. Erde und zeitliche Veränderungen - Schwerefeld der Erde und 3. zeitliche Veränderungen
-Global Geodetic Observing System (GGOS): Anwendungen im System Erde
103-0627-00LSpace Geodesy Lab5 credits3PG. Möller, R. Hohensinn, M. Rothacher, B. Soja
AbstractSpace Geodesy Lab allows you to deepen your knowledge about space-geodetic techniques, in particular of GNSS, VLBI, SLR, satellite altimetry and gravity missions for monitoring the environment and changes within the Earth system.
Learning objectiveStudents enrolled in this course will be given the possibility to learn about space-geodetic methods to solve a specific research problem. As a result, you will become familiar with the entire processing chain from gathering of raw measurements to geodetic products like reference frames, station motions, Earth orientation parameters, atmospheric and climate variables, or the Earth gravity field and its variations.
ContentFor a small project based on space geodetic measurements and methods (or a related project of your choice), you or a group of 2-3 students will be provided with the necessary equipment, access to data and analysis tools for solving a research question. Therefore, we expect autonomous development, planning, data analysis and interpretation of the results. At the end of the semester you will be ask to present your findings and to submit a report summarizing your semester activities. As needed, further background will be given during the semester.
Lecture notesdiv. sources
LiteratureM. Rothacher – Space Geodesy lecture notes
Additional literature will be distributed during lectures
Prerequisites / NoticeBasic knowledge about satellite geodesy, reference frames and the Earth gravity field. Programming skills in Matlab, Python or similar.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence assessed
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
103-0817-00LGeomatics Seminar Restricted registration - show details 4 credits2SK. Schindler, K. W. Axhausen, A. Grêt-Regamey, L. Hurni, W. Kuhn, M. Rothacher, A. Wieser
AbstractIntroduction to general scientific working methods and skills in the core fields of geomatics. It includes a literature study, a review of one of the articles, a presentation and a report about the literature study.
Learning objectiveLearn how to search for literature, how to write a scientific report, how to present scientific results, and how to critically read and review a scientific article.
ContentA list of topics for the literature study are made available at the beginning of the semester. A topic can be selected based on a moodle.
Prerequisites / NoticeAgreement with one of the responsible Professors is necessary.
103-1184-AALPhysical and Kinematic Geodesy
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
6 credits4RM. Rothacher
AbstractModern methods of Higher Geodesy. Basics of Shape of the Earth: Geoid determination and deflection of the vertical. Introduction into the most important topics: Satellite Geodesy and Navigation; Physical Geodesy and gravity field of the Earth; Astronomical Geodesy and Positioning; Mathematical Geodesy and basics of Geodynamics. Reference systems and applications in National and Global Geomatics.
Learning objectiveOverview over the entire spectrum of Physical and Kinematic Geodesy