Alessandro Vindigni: Catalogue data in Autumn Semester 2018

Name PD Dr. Alessandro Vindigni
FieldSolid state physics
Address
Dep. Physik
ETH Zürich, HPP N 14.1
Hönggerbergring 64
8093 Zürich
SWITZERLAND
E-mailvindigna@ethz.ch
DepartmentPhysics
RelationshipPrivatdozent

NumberTitleECTSHoursLecturers
402-0535-00LIntroduction to Magnetism6 credits3GA. Vindigni
AbstractAtomic paramagnetism and diamagnetism, intinerant and local-moment magnetism, Ising and Heisenberg models, the mean-field approximation, spin waves, magnetic phase transition, domains and domain walls, magnetization dynamics from picoseconds to human time scales.
Learning objective
ContentThe lecture ''Introduction to Magnetism'' is the regular course on Magnetism for the Master curriculum of the Department of Physics of ETH Zurich. With respect to specialized courses related to Magnetism such as "Quantum Solid State Magnetism" (A. Zheludev and K. Povarov) or "Ferromagnetism: From Thin Films to Spintronics" (R. Allenspach), this lecture focusses on why only few materials are magnetic at finite temperature. We will see that defining what we understand by "being magnetic" in a formal way is essential to address this question properly.
Preliminary contents for the HS18:
- Magnetism in atoms (quantum-mechanical origin of atomic magnetic moments, intra-atomic exchange interaction)
- Magnetism in solids (mechanisms producing inter-atomic exchange interaction in solids, crystal field).
- Magnetic order at finite temperatures (Ising and Heisenberg models, mean-field approximation, low-dimensional magnetism)
- Dipolar interaction in ferromagnets (shape anisotropy, frustration and modulated phases of magnetic domains)
- Spin physics in the time domain (Larmor precession, resonance phenomena, Bloch equation, Landau-Lifshitz-Gilbert equation, superparamagnetism)
Lecture notesLecture notes and slides are made available during the course, through the Moodle portal.
Prerequisites / NoticeThe former title of this course unit was "Fundamental Aspects of Magnetism". This lecture insists on the fundamental aspects -- quantum physics and statistical physics of magnetism.
Applications to nanoscale magnetism will be considered from the perspective of basic underlying principles.