Name  Prof. Dr. Christian Franck 
Field  High Voltage Engineering 
Address  Inst. f. El. Energieübertragung ETH Zürich, ETL H 24.1 Physikstrasse 3 8092 Zürich SWITZERLAND 
Telephone  +41 44 632 47 62 
franck@eeh.ee.ethz.ch  
URL  http://hvl.ee.ethz.ch 
Department  Information Technology and Electrical Engineering 
Relationship  Full Professor 
Number  Title  ECTS  Hours  Lecturers  

227000100L  Networks and Circuits I  4 credits  2V + 2U  C. Franck  
Abstract  This course introduces the students into the basics of electric circuits, the underlying physical phenomena and required mathematical methods.  
Learning objective  Voltage, current and properties of basic elements of electric circuits, i.e. capacitors, resistors and inductors should be understood in relation to electric and magnetic fields. Furthermore, the students should be able to mathematically describe, analyze and finally design technical realizations of circuit elements. Students should also be familiar with the calculation of voltage and current distributions of DC circuits. The effect and the mathematical formulation of magnetic induction should be known for technical applications.  
Content  Electrostatic field; Stationary electric current flow; Basic electric circuits; current conduction mechanisms; time variant electromagnetic field.  
Lecture notes  Manfred Albach, Elekrotechnik ISBN 9783868943986 (2020) and lecture notes  
Literature  Manfred Albach, Elekrotechnik 9783868943986 (2020)  
Competencies 
 
2270117AAL  High Voltage Engineering Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.  6 credits  8R  C. Franck  
Abstract  Understanding of the fundamental phenomena and principles connected with the occurrence of extensive electric field strengths. This knowledge is applied to the dimensioning of highvoltage equipment. Methods of computermodeling in use today are presented and applied within a workshop in the framework of the exercises.  
Learning objective  The students know the fundamental phenomena and principles connected with the occurrence of extensive electric field strengths. They comprehend the different mechanisms leading to the failure of insulation systems and are able to apply failure criteria on the dimensioning of high voltage components. They have the ability to identify of weak spots in insulation systems and to name possibilities for improvement. Further they know the different insulation systems and their dimensioning in practice.  
Content   discussion of the field equations relevant for high voltage engineering.  analytical and numerical solutions/solving of this equations, as well as the derivation of the important equivalent circuits for the description of the fields and losses in insulations  introduction to kinetic theory of gases  mechanisms of the breakdown in gaseous, liquid and solid insulations, as well as insulation systems  methods for the mathematical determination of the electric withstand of gaseous, liquid and solid insulations  application of the expertise on high voltage components  excursions to manufacturers of high voltage components  excercise to learn on computermodeling in high voltage engineering  
Lecture notes  Lecture Slides  
Literature  A. Küchler, Hochspannungstechnik, Springer Berlin, 4. Auflage, 2017 (ISBN: 9783662546994)  
Competencies 
 
227011700L  High Voltage Engineering  6 credits  4G  C. Franck, U. Straumann  
Abstract  High electric fields are used in numerous technological and industrial applications such as electric power transmission and distribution, Xray devices, DNA sequencers, flue gas cleaning, power electronics, lasers, particle accelerators, copying machines, .... High Voltage Engineering is the art of gaining technological control of high electrical field strengths and high voltages.  
Learning objective  The students know the fundamental phenomena and principles associated with the occurrence of high electric field strengths. They understand the different mechanisms leading to the failure of insulation systems and are able to apply failure criteria on the dimensioning of high voltage components. They have the ability to identify of weak spots in insulation systems and to propose options for improvement. Further, they know the different insulation systems and their dimensioning in practice.  
Content   discussion of the field equations relevant for high voltage engineering.  analytical and numerical solutions/solving of this equations, as well as the derivation of the important equivalent circuits for the description of the fields and losses in insulations  introduction to kinetic gas theory  mechanisms of the breakdown in gaseous, liquid and solid insulations, as well as insulation systems  methods for the mathematical determination of the electric withstand of gaseous, liquid and solid insulations  application of the expertise on high voltage components  excursions to manufacturers of high voltage components  
Lecture notes  Lecture Slides  
Literature  A. Küchler, High Voltage Engineering: Fundamentals – Technology – Applications, Springer Berlin, 2018 (ISBN 9783642119927)  
Competencies 
 
227012200L  Introduction to Electric Power Transmission: System & Technology  4 credits  2V + 2U  C. Franck, G. Hug  
Abstract  Introduction to theory and technology of electric power transmission systems.  
Learning objective  At the end of this course, the student will be able to: describe the structure of electric power systems, name the most important components and describe what they are needed for, apply models for transformers and overhead power lines, explain the technology of transformers and lines, calculate stationary power flows and other basic parameters in simple power systems.  
Content  Structure of electric power systems, transformer and power line models, analysis of and power flow calculation in basic systems, technology and principle of electric power systems.  
Lecture notes  Lecture script in English, exercises and sample solutions.  
Competencies 
 
227163110L  Case Studies: Energy Systems and Technology: Part 1 Only for Energy Science and Technology MSc.  2 credits  4G  C. Franck, C. Schaffner  
Abstract  This course will allow the students to get an interdisciplinary overview of the “Energy” topic. It will explore the challenges to build a sustainable energy system for the future. This will be done through the means of case studies that the students have to work on. These case studies will be provided by industry partners.  
Learning objective  The students will understand the different aspects involved in designing solutions for a sustainable future energy system. They will have experience in collaborating in interdisciplinary teams. They will have an understanding on how industry is approaching new solutions.  
Lecture notes  Descriptions of case studies.  
Competencies 
