Annalisa Manera: Katalogdaten im Herbstsemester 2023

NameFrau Prof. Dr. Annalisa Manera
NamensvariantenA. Manera
LehrgebietNukleare Sicherheit und Mehrphasenströmungen
Adresse
Nuclear Safety & Multiphase Flows
ETH Zürich, ML K 13
Sonneggstrasse 3
8092 Zürich
SWITZERLAND
Telefon+41 44 633 87 76
E-Mailmaneraa@ethz.ch
DepartementMaschinenbau und Verfahrenstechnik
BeziehungOrdentliche Professorin

NummerTitelECTSUmfangDozierende
151-0123-00LExperimental Methods for Engineers4 KP2V + 2UD. J. Norris, F. Coletti, M. Lukatskaya, A. Manera, A. Shapiro, O. Supponen, M. Tibbitt
KurzbeschreibungThe course presents an overview of measurement tasks in engineering environments. Different concepts for the acquisition and processing of typical measurement quantities are introduced. Following an initial in-class introduction, laboratory exercises from different application areas (especially in thermofluidics, energy, and process engineering) are attended by students in small groups.
LernzielIntroduction to various aspects of measurement techniques, with particular emphasis on thermo-fluidic, energy, and process-engineering applications.

Understanding of various sensing technologies and analysis procedures.

Exposure to typical experiments, diagnostics hardware, data acquisition, and processing.

Study of applications in the laboratory. Fundamentals of scientific documentation and reporting.
InhaltIn-class introduction to representative measurement techniques in the research areas of the participating institutes (fluid dynamics, energy technology, and process engineering).

Student participation in ~6 laboratory experiments (study groups of ~3 students, dependent on the number of course participants and available experiments).

Lab reports for all attended experiments have to be submitted by the study groups.
SkriptPresentations, handouts, and instructions are provided for each experiment.
LiteraturHolman, J.P. "Experimental Methods for Engineers," McGraw-Hill 2001, ISBN 0-07-366055-8
Morris, A.S. & Langari, R. "Measurement and Instrumentation," Elsevier 2011, ISBN 0-12-381960-4
Eckelmann, H. "Einführung in die Strömungsmesstechnik," Teubner 1997, ISBN 3-519-02379-2
Voraussetzungen / BesonderesBasic understanding in the following areas:
- fluid mechanics, thermodynamics, heat and mass transfer
- electrical engineering / electronics
- numerical data analysis and processing (e.g. using MATLAB)
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Entscheidungsfindunggefördert
Medien und digitale Technologiengefördert
Problemlösunggefördert
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgeprüft
Menschenführung und Verantwortunggefördert
Persönliche KompetenzenKritisches Denkengefördert
Selbststeuerung und Selbstmanagement gefördert
151-0163-00LNuclear Energy Conversion4 KP2V + 1UA. Manera
KurzbeschreibungPhysikalische Grundlagen der Kernspaltung und der Kettenreaktion, thermische Auslegung, Aufbau, Funktion, und Betrieb von Kernreaktoren und Kernkraftwerken, Leichtwasserreaktoren und andere Reaktortypen, Konversion und Brüten
LernzielDie Studierenden erhalten einen Überblick über die Energieerzeugung in Kernkraftwerken, über Aufbau und Funktion der wichtigsten Reaktortypen sowie über den Kernbrennstoffkreislauf mit Schwerpunkt auf Leichtwasserreaktoren. Sie erhalten die mathematisch-physikalischen Grundlagen für quantitave Abschätzungen zu den wichtigsten Aspekten der Auslegung, des dynamischen Verhaltens und der Stoff- und Energieströme.
InhaltNeutronenphysikalische Grundlagen von Kernspaltung und Kettenreaktion. Thermodynamische Grundlagen von Kernreaktoren. Auslegung des Reaktorkerns. Einführung in das dynamische Verhalten von Kernreaktoren. Überblick über die wichtigsten Reaktortypen, Unterschied zwischen thermischen Reaktoren und Brutreaktoren. Aufbau und Betrieb von Kernkraftwerken mit Druck- und Siedewasserreaktoren, Rolle und Funktion der wichtigsten Sicherheitssysteme, Besonderheiten des Energieumwandlungsprozesses. Entwicklungstendenzen in der Reaktortechnik.
SkriptVorlesungsunterlagen werden verteilt. Vielfältiges Angebot an zusätzlicher Literatur und Informationen unter https://www.ethz.ch/content/specialinterest/mavt/energy-technology/lab-of-nuclear-energy-systems/en/studium/teaching-materials/151-0163-00l-nuclear-energy-conversion.html
LiteraturS. Glasston & A. Sesonke: Nuclear Reactor Engineering, Reactor System Engineering, Ed. 4, Vol. 2., Springer-Science+Business Media, B.V.

R. L. Murray: Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier
151-2039-00LBeyond-Design-Basis Safety
Students registered at ETH Zurich have to enroll to this course at ETH. EPFL students can enroll to this course directly at EPFL.
4 KP3GA. Manera, T. Lind, D. Paladino
KurzbeschreibungComprehensive knowledge is provided on the phenomena during a Beyond Design Bases Accident (BDBA) in a Nuclear Power Plants (NPP), on their modeling as well as on countermeasures taken against radioactive releases into the environment, both by Severe Accident Management Guidelines (SAMG), together with technical backfitting measures in existing plants and an extended design of new NPP.
LernzielDeep understanding of the processes associated with core degradation and fuel melting in case of sustained lack of Core Cooling Systems, potential threats to the containment integrity, release and transport of active and inactive materials, the function of the containment, countermeasures mitigating release of radioactive material into the environment (accident management measures, back-fitting and extended design), assessment of timing and amounts of released radioactive material (source term).
InhaltPhysical basic understanding of severe accident phenomenology: loss of core cooling, core dryout, fuel heat-up, fuel rod cladding oxidation and hydrogen production, loss of core coolability and, fuel melting, melt relocation and melt accumulation in the lower plenum of the reactor pressure vessel (RPV), accident evolution at high and low reactor coolant system pressure , heat flux from the molten debris in the lower plenum and its distribution to the lower head, RPV failure and melt ejection, , direct containment heating, molten corium and concrete interaction, in- and ex-vessel molten fuel coolant interaction (steam explosions), hydrogen distribution in the containment, hydrogen risk (deflagration , transition to detonation), pressure buildup and containment vulnerability, countermeasures mitigating/avoiding hydrogen deflagration, formation, transport and deposition of radioactive aerosols, iodine behavior, plant ventilation-filtration systems, filtered venting to avoid containment failure and mitigate activity release into the environment, containment bypass scenarios, source term assessment, in-vessel and ex-vessel corium retention, behavior of fuel elements in the spent fuel pool during long-lasting station blackout, cladding oxidation in air, discussion of occurred severe accidents (Harrisburg, Chernobyl, Fukushima), internal and external emergency response. Probabilistic assessment and interfacing with severe accident phenomenology.
SkriptHand-outs will be distributed
Voraussetzungen / BesonderesPrerequisites: Recommended courses: 151-0156-00L Safety of Nuclear Power Plants plus either 151-0163-00L Nuclear Energy Conversion or 151-2015-00L Reactor Technology
151-2045-00LDecommissioning of Nuclear Power Plants
Students registered at ETH Zurich have to enroll to this course at ETH. EPFL students can enroll to this course directly at EPFL.
4 KP3GA. Manera, F. Leibundgut
KurzbeschreibungIntroduction to aspects of Nuclear Power Plant decommissioning including project planning and management, costs and financing, radiological characterization, dismantling/decontamination technologies, safety aspects and radioactive waste management considerations.
LernzielAim of this course is to provide the students with an overview of the multidisciplinary issues that have to be addressed for the successful decommissioning of NPPs. Students will get exposed to principles of project management, operations management, cost estimations, radiological characterization, technologies relevant to the safe dismantling of NPPs and best-practice in the context of radioactive waste management.
InhaltLegal framework, project management and operations methods and tools, cost estimation approaches and methods, nuclear calculations and on-site radiological characterization and inventorying, state-of-the-art technologies for decontamination and dismantling, safety considerations, state-of-the-art practice for radioactive waste treatment, packaging and transport, interface with radioactive waste management and disposal. The course will additionally include student visits to relevant nuclear sites in Switzerland and Germany.
SkriptSlides will be handed out.
Literatur1. "Nuclear Decommissioning: Planning, Execution and International Experience", M. Laraia, Woodhead Publishing, 2012
2. "Cost Estimation: Methods and Tools", G.M. Mislick and D.A. Nussbaum, Wiley, 2015
3. "The Oxford Handbook of Megaproject Management", B. Flyvbjerg, Oxford University Press, 2017