Andrew de Mello: Katalogdaten im Herbstsemester 2021 |
Name | Herr Prof. Dr. Andrew de Mello |
Lehrgebiet | Biochemisches Engineering |
Adresse | Inst. f. Chemie- u. Bioing.wiss. ETH Zürich, HCI F 115 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 66 10 |
andrew.demello@chem.ethz.ch | |
URL | https://www.demellogroup.ethz.ch |
Departement | Chemie und Angewandte Biowissenschaften |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
529-0010-00L | Chemie ![]() | 3 KP | 2V + 1U | A. de Mello, F. Jenny, C. Mondelli, D. J. Norris, S. Stavrakis | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Das ist ein allgemeiner Chemiekurs für 1. Semester Bachelor-Studierende des Departements Maschinenbau und Verfahrenstechnik (D-MAVT) und Master-Studierende des Departements Architektur (D-ARCH). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Der Kurs hat folgende Ziele: 1) Ein genaues Verständnis der Grundprinzipien der Chemie und ihrer Anwendung zu bilden. 2) Ein Verständnis der atomaren und molekularen Natur von Materie und den chemischen Reaktionen, die ihre Transformationen beschreiben, zu entwickeln. 3) Jene Bereiche zu betonen, welche für einen Ingenieurskontext am relevantesten sind. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Elektronische Struktur von Atomen, chemische Bindungen, Molekülgeometrie und Bindungstheorien, intermolekulare Kräfte, Gase, Thermodynamik, chemische Thermodynamik, chemische Kinetik, Gleichgewichte, Flussigkeiten und Lösungen, Säure und Basen, Redox- und Elektrochemie. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Folien sind vor jeder Vorlesung erhältlich und können auf Moodle gefunden werden. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Diese Lehrveranstaltung basiert auf "Chemie Studieren kompakt" von Brown, LeMay, Bursten, Murphy, Woodward und Stoltzfus. Pearson Studium, 14. Ausgabe. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0030-00L | Praktikum Chemie | 3 KP | 6P | A. de Mello, F. Jenny, M. H. Schroth | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Im Praktikum Chemie werden grundlegende Techniken der Laborarbeit erlernt. Die Experimente umfassen sowohl analytische als auch präparative Aufgaben. So werden z. B. Boden-und Wasserproben analysiert, ausgewählte Synthesen durchgeführt, und die Arbeit mit gasförmigen Substanzen im Labor wird vermittelt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Einblick in die experimentelle Methodik der Chemie: Verhalten im Labor, Umgang mit Chemikalien. Beobachten und Beschreiben grundlegender chemischer Reaktionen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Natürliche und künstliche Stoffe: Merkmale, Gruppierungen, Persistenz. Solvatation: vom Wasser bis zum Erdöl. Protonenübertragungen. Lewis-Säuren und Basen: Metallzentren und Liganden. Elektrophile C-Zentren und nukleophile Reaktanden. Mineralbildung. Redoxprozesse: Uebergangsmetallkomplexe. Gase der Atmosphäre. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Das Skript zum Praktikum und die Versuchsanleitungen werden auf einer eigenen homepage zugänglich gemacht. Die entsprechenden Informationen werden am 1. Semestertag bekanntgegeben. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Die genaue Vorbereitung anhand des Praktikums- und des Vorlesungsskripts ist Voraussetzung für die Teilnahme am Praktikum. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Schutzkonzept: https://chab.ethz.ch/studium/bachelor1.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0557-00L | Chemical Engineering Thermodynamics | 4 KP | 3G | A. de Mello, S. Stavrakis | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course introduces the basic principles and concepts of chemical engineering thermodynamics. Whilst providing insights into the meaning and properties of fundamental thermodynamic quantities, the course also has a primary focus on the application of thermodynamic concepts to real chemical engineering problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | A primary objective of the course is to present a rigorous treatment of classical thermodynamics, whilst retaining a strong engineering perspective. Accordingly, real-world engineering examples will be used to highlight how thermodynamics is applied in engineering practice. The core ideas presented and developed within the course will provide a foundation for subsequent studies in such fields as fluid mechanics, heat transfer and statistical thermodynamics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The first part of the course introduces the basic concepts and language of chemical engineering thermodynamics. This is followed by an analysis of energy and energy transfer, with a specific focus on the concept of work and the first law of thermodynamics. Next, the notion of a pure substance is introduced, with a discussion of the physics of phase-changes being presented. The description of pure substances is further developed through an analysis of the PVT behavior of fluids, equation of states, ideal and non-ideal gas behaviour and compressibility factors. The second part of the course begins with a discussion of the use of the energy balance relation in closed systems that involve pure substances and then develops relations for the internal energy and enthalpy of ideal gases. Next, the second law of thermodynamics is introduced, with a discussion of why processes occur in certain directions and why energy has quality as well as quantity. Applications to cyclic devices such as thermal energy reservoirs, heat engines and refrigerators are provided. Entropy changes that take place during processes for pure substances, incompressible substances and ideal gases are described. The third part of the course establishes thermodynamic formulations for the calculation of enthalpy, internal energy and entropy as function of pressure and temperature, Gibbs energy, fugacity and chemical potential. Two-phase systems are introduced as well as the use of equations of state to construct the complete phase diagrams of pure fluid. The final part of the course focuses on the properties of mixtures and the phase behavior of multicomponent systems. The fundamental equations of phase equilibria in terms of the chemical potential and fugacity are also discussed. The concept of an ideal solution is introduced and developed. This is followed by an assessment of non-ideal behavior and the use of activity coefficients for describing phase diagrams. Particular focus is given to phase equilibria. Finally, concepts relating to chemical equilibria are introduced with the general concepts developed being applied to reacting species. Examples here include the calculation of the Gibbs free energy and the equilibrium constant of a reaction. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture handouts, background literature, problem sheets and notes will be made accessible to enrolled students through the lecture Moodle site. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Although there is not set text for the course, the following three texts will be used in part and are excellent introductions to Chemical Engineering thermodynamics: 1. Introduction to Chemical Engineering Thermodynamics, J.M. Smith, H.C. Van Ness, M.M. Abbott & M.T. Swihart, Eighth Edition, McGraw Hill, 2018 2. Fundamentals of Thermodynamics, Claus Borgnakke & Richard E. Sonntag, Eighth Edition, Wiley, 2012. 3. Fundamentals of Chemical Engineering Thermodynamics: With Applications to Chemical Processes, Themis Matsoukas, Prentice Hall, 2013. Resources for the acquisition of material properties and data: 1. NIST Chemistry WebBook (https://webbook.nist.gov/chemistry/) 2. CRC Handbook of Chemistry & Physics, 99th Edition (http://hbcponline.com/) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | A basic knowledge of chemical thermodynamics is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0837-01L | Biomicrofluidic Engineering ![]() Number of participants limited to 25. | 6 KP | 3G | A. de Mello | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Microfluidics describes the behaviour, control and manipulation of fluids geometrically constrained within sub-uL environments. Microfluidic devices enable physical and chemical processes to be controlled with exquisite precision and in an fast and efficient manner. This course introduces the underlying concepts, features and applications of microfluidic systems in the chemical and life sciences. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | We will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis. A central component of this course is a research project. This will allow students to develop a practical understanding of the benefits of miniaturization in chemical and biological experimentation. Projects will be performed in groups of between four and six students and will include both experimental and simulation aspects. Each group, under the guidance of a mentor, will plan and execute a novel research project. The results of this activity will be disseminated through an 'academic-style" research article and a "conference-style" oral presentation. Course grades will be evaluated through both a written exam and the project grade. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Specific topics covered in the course include, but are not limited to: 1. Theoretical Concepts Scaling laws, features of thermal/mass transport, diffusion, basic description of fluid flow in small volumes, microfluidic mixing strategies. 2. Microfluidic Device Manufacture Basic principles of conventional lithography of rigid materials, ‘soft’ lithography, polymer machining (injection molding, hot embossing, and 3D-printing). 3. Electrokinetics Principles of electrophoresis, electroosmosis, high performance capillary electrophoresis, electrokinetic scaling laws, chip-based electrophoresis and isoelectric focusing. 4. Mass Transfer Phenomena Key features of mass transport in microfluidic systems, diffusive transport, diffusion-convection, Péclet number, Taylor-Aris diffusion, chaotic mixing and Damköhler numbers. 5. Heat Transfer Phenomena Key features of thermal transport in microfluidic systems, conduction, convection, heat transfer by convection in internal flows, heat transfer processes in microfluidic devices. 6. Microfluidic Systems for Materials Synthesis Microfluidic reactors for the controlled synthesis of colloidal nanomaterials, advanced automation for bespoke materials discovery & characterization. 7. Point-of-Care Diagnostics Microscale tools for diagnostics, challenges associated with point-of-care (PoC) diagnostic testing, requirements for PoC devices, common PoC device formats, applications of PoC diagnostics in the developing world. 8. Microscale DNA Amplification Amplification and analysis of nucleic acids using batch, continuous flow and droplet-based microfluidic reactors. 9. Small volume Molecular Detection Spectroscopic approaches for analyte detection in small volumes with a particular focus on single molecule detection. 10. Droplets and Segmented Flows Formation, manipulation and use of liquid/liquid segmented flows in chemical and biological experimentation. 11. Single Cell Analysis Applications of microfluidic tools in cellular analysis, flow cytometry, enzymatic assays and single cell analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture handouts, background literature, problem sheets and notes will be provided electronically through the course Moodle site. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | There is no set text for the course. All relevant literature will be provided electronically through the course Moodle site. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
|