Name | Prof. Dr. Helma Wennemers |
Field | Organic Chemistry |
Address | Lab. für Organische Chemie ETH Zürich, HCI H 313 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 37 77 |
helma.wennemers@org.chem.ethz.ch | |
Department | Chemistry and Applied Biosciences |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
529-0221-00L | Organic Chemistry I | 3 credits | 2V + 1U | H. Wennemers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course will build upon the basic knowledge of structure and reactivity of organic molecules gained in AC/OCI and AC/OCII. The module aims to provide a wide understanding of the occurrence, synthesis, properties, and reactivity of carbonyl compounds. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal of this course is the acquisition of a basic repertoire of synthetic methods including important reactions of aldehydes, ketones, carboxylic acids, and carboxylic acid derivatives. Particular emphasis is placed on the understanding of reaction mechanisms and the correlation between structure and reactivity. A deeper understanding of the concepts presented during the lecture is reached by solving the problems handed out each time and discussed one week later in the exercise class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Structure and properties of carbonyl compounds. Chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds). Synthesis and reactivity of carboxylic acid derivatives (nucleophilic addition-elimination reactions). Oxidations and reductions. Reactivity at the alpha-carbon (keto/enol tautomerization, alpha-functionalization, aldol reactions, conjugate addition reactions). Introduction to the concepts of protecting groups and retrosynthesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The lecture slides, problem sets, and additional documents are provided online. Link: https://wennemers.ethz.ch/education.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Clayden, Greeves, and Warren. Organic Chemistry, 2nd Edition. Oxford University Press, 2012. Additional literature will be provided at the beginning of the class and in the lecture notes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0240-00L | Chemical Biology - Peptides | 6 credits | 3G | H. Wennemers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | An advanced course on the synthesis, properties and function of peptides in chemistry and biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge of the synthesis, properties and function of peptides in chemistry and biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Advanced peptide synthesis, conformational properties, combinatorial chemistry, therapeutic peptides, peptide based materials, peptides in nanotechnology, peptides in asymmetric catalysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Citations from the original literature relevant to the individual lectures will be assigned weekly. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Norbert Sewald, Hans Dieter Jakubke "Peptides: Chemistry and Biology", 1st edition, Wiley VCH, 2002. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0290-00L | Organic Chemistry (Seminar) ![]() | 0 credits | 2S | E. M. Carreira, J. W. Bode, H. Wennemers, R. Zenobi | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0299-00L | Organic Chemistry | 0 credits | 1.5K | J. W. Bode, E. M. Carreira, P. Chen, K. Lang, B. Morandi, H. Wennemers, R. Zenobi | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0731-00L | Nucleic Acids and Carbohydrates Note for BSc Biology students: Only one of the two concept courses 529-0731-00 Nucleic Acids and Carbohydrates (autumn semester) or 529-0732-00 Proteins and Lipids (spring semester) can be counted for the Bachelor's degree. | 6 credits | 3G | K. Lang, P. A. Kast, S. J. Sturla, H. Wennemers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Mainly based on original literature, a detailed list will be distributed during the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0357-00L | Cellular Matters: Properties, Functions and Applications of Biomolecular Condensates The number of participants is limited to 30 and will only take place with a minimum of 6 participants. The first lecture will serve to form groups of students and assign papers. | 4 credits | 2S | T. Michaels, F. Allain, P. Arosio, Y. Barral, D. Hilvert, M. Jagannathan, R. Mezzenga, G. Neurohr, R. Riek, A. E. Smith, K. Weis, H. Wennemers, further lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This Master level course delves into the emerging field of biomolecular condensates - membrane-less organelles in cells. Using interdisciplinary concepts from biology, chemistry, biophysics, and soft matter, we will explore the biological properties of these condensates, their functions in health and disease, and their potentiol as new biomimetic materials for various applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | In the last decade, a novel type of cell compartments called biomolecular condensates have been discovered. This discovery is radically changing our understanding of the cell, its organization, and dynamics. The emerging picture is that the cytoplasm and nucleoplasm are highly complex fluids that can (meta)stably segregate into membrane-less compartments, similary to emulsions. This interdisciplinary course encompasses milestone works and cutting-edge research questions in the young field of biomolecular condensates, including their properties, functions, and applications. The course begins with a lecture series that introduces the topic of condensates to an interdisciplinary audience and provides a theoretical foundation for understanding current research questions in the field. the lecturesprovide a base for student presentations of recent publications in the field, and for research seminars given by course lecturers, who are all active researchers with diverse expertise. Through this exciting interdisciplinary understanding of biomolecular condensates, bridging biology, chemistry, biophysics, and soft matter. Students will not only learn how to critically read and evaluate scientific literature but will also gain valuable experience in giving scientific presentations to an interdisciplinary audience. Each presentation will require an introduction, critical analysis of the results, and a discussion of their significance, allowing student to substantiate their statements with a critical mindset that considers the pros and cons of chosen approaches and methods, as well as any limitations or possible follow-up experiments. This process will enable student to ask relevant querions and actively participate in class discussions, further enhancing their scientific skills. In preparing the presentations, the students will have the unique opportunity to interact closely with each other and with the lecturers, who are all internationally well-established experts, and receive guidance in selectin a topic for the final presentaton and supporting literature. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The topic of biomolecular condensates goes beyond the boundaries of traditional disciplines and requires a multi-disciplinary approach that leverages and cross-fertilizes biology, physical chemistry, biophysics, and soft matter. This course will explore the properties, functions and potentioal applicatons of biomolecular condensates, including their role in neurodegenerative diseases such as Alzheimer's and Parkinson's, as well as their use as smart biomimetic materials. This course is divided into two parts. The fist part will introduce the basic concepts essentialto the study of biomolecular condensates and phase separation. Topics include: fundamental units and scales in soft matter, phase transitions in biology, biopolymers and molecular self-assembly, introduction to active matter. This will establish a foundation for the second part, which will explore milestone works and current research in the field of biomolecular condensates. Each lecture of this second part will consist of: 1) a short literature seminar, where student groups will present and discuss a milestone paper assigned in advance and 2) a research seminar, where one of the course lecturers will present their own state-of-the art research in the field, building upon the milestone literature. At the beginning of the course, student groups will be formed and assigned the milestone papers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides and some scripts will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | No compulsory textbooks. Literature will be provided during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
|