Benjamin Sudakov: Catalogue data in Spring Semester 2023

Name Prof. Dr. Benjamin Sudakov
FieldMathematics
Address
Institut für Operations Research
ETH Zürich, HG G 65.1
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 632 40 28
E-mailbenjamin.sudakov@math.ethz.ch
URLhttp://www.math.ethz.ch/~sudakovb
DepartmentMathematics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
252-4202-00LSeminar in Theoretical Computer Science Information 2 credits2SE. Welzl, B. Gärtner, M. Hoffmann, J. Lengler, A. Steger, D. Steurer, B. Sudakov
AbstractPresentation of recent publications in theoretical computer science, including results by diploma, masters and doctoral candidates.
Learning objectiveTo get an overview of current research in the areas covered by the involved research groups. To present results from the literature.
Prerequisites / NoticeThis seminar takes place as part of the joint research seminar of several theory groups. Intended participation is for students with excellent performance only. Formal restriction is: prior successful participation in a master level seminar in theoretical computer science.
401-3052-DRLGraph Theory Information Restricted registration - show details
Only for ETH D-MATH doctoral students and for doctoral students from the Institute of Mathematics at UZH. The latter need to send an email to Jessica Bolsinger (info@zgsm.ch) with the course number. The email should have the subject „Graduate course registration (ETH)“.
2 credits4V + 1UB. Sudakov
AbstractBasics, trees, Caley's formula, matrix tree theorem, connectivity, theorems of Mader and Menger, Eulerian graphs, Hamilton cycles, theorems of Dirac, Ore, Erdös-Chvatal, matchings, theorems of Hall, König, Tutte, planar graphs, Euler's formula, Kuratowski's theorem, graph colorings, Brooks' theorem, 5-colorings of planar graphs, list colorings, Vizing's theorem, Ramsey theory, Turán's theorem
Learning objectiveThe students will get an overview over the most fundamental questions concerning graph theory. We expect them to understand the proof techniques and to use them autonomously on related problems.
Lecture notesLecture will be only at the blackboard.
LiteratureWest, D.: "Introduction to Graph Theory"
Diestel, R.: "Graph Theory"

Further literature links will be provided in the lecture.
Prerequisites / NoticeStudents are expected to have a mathematical background and should be able to write rigorous proofs.
401-3052-05LIntroduction to Graph Theory
This is the first half of the course unit 401-3052-10L Graph Theory. Notice that at most one of the two course units 401-3052-05L Introduction to Graph Theory and 401-3052-10L Graph Theory can be recognised for credits.
5 credits2V + 1UB. Sudakov
AbstractBasic notions, trees, spanning trees, Caley's formula, vertex and edge connectivity, 2-connectivity, Mader's theorem, Menger's theorem, Eulerian graphs, Hamilton cycles, Dirac's theorem, matchings, theorems of Hall, König and Tutte, planar graphs, Euler's formula, basic non-planar graphs, graph colorings, greedy colorings, Brooks' theorem, 5-colorings of planar graphs
Learning objectiveThe students will get an overview over the most fundamental questions concerning graph theory. We expect them to understand the proof techniques and to use them autonomously on related problems.
Lecture notesLecture will be only at the blackboard.
LiteratureWest, D.: "Introduction to Graph Theory"
Diestel, R.: "Graph Theory"

Further literature links will be provided in the lecture.
Prerequisites / NoticeStudents are expected to have a mathematical background and should be able to write rigorous proofs.


NOTICE: This course unit was previously offered as 252-1408-00L Graphs and Algorithms.
401-3052-10LGraph Theory10 credits4V + 1UB. Sudakov
AbstractBasics, trees, Caley's formula, matrix tree theorem, connectivity, theorems of Mader and Menger, Eulerian graphs, Hamilton cycles, theorems of Dirac, Ore, Erdös-Chvatal, matchings, theorems of Hall, König, Tutte, planar graphs, Euler's formula, Kuratowski's theorem, graph colorings, Brooks' theorem, 5-colorings of planar graphs, list colorings, Vizing's theorem, Ramsey theory, Turán's theorem
Learning objectiveThe students will get an overview over the most fundamental questions concerning graph theory. We expect them to understand the proof techniques and to use them autonomously on related problems.
Lecture notesLecture will be only at the blackboard.
LiteratureWest, D.: "Introduction to Graph Theory"
Diestel, R.: "Graph Theory"

Further literature links will be provided in the lecture.
Prerequisites / NoticeStudents are expected to have a mathematical background and should be able to write rigorous proofs.