Giovanni Sansavini: Katalogdaten im Herbstsemester 2024 |
Name | Herr Prof. Dr. Giovanni Sansavini |
Lehrgebiet | Zuverlässigkeits- und Risikoanalyse |
Adresse | Reliability and Risk Engineering ETH Zürich, LEE L 201 Leonhardstrasse 21 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 50 38 |
sansavig@ethz.ch | |
URL | http://www.rre.ethz.ch/ |
Departement | Maschinenbau und Verfahrenstechnik |
Beziehung | Ausserordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0221-00L | Introduction to Modeling and Optimization of Sustainable Energy Systems | 4 KP | 4G | G. Sansavini, A. Bardow, S. Moret | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course introduces the fundamentals of energy system modeling for the analysis and the optimization of the energy system design and operations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | At the end of this course, students will be able to: - define and quantify the key performance indicators of sustainable energy systems; - select and apply appropriate models for conversion, storage and transport of energy; - develop mathematical models for the analysis, design and operations of multi-energy systems and solve them with appropriate mathematical tools; - select and apply methodologies for the uncertainty analysis on energy systems models; - apply the acquired knowledge to tackle the challenges of the energy transition. In the course "Introduction to Modeling and Optimization of Sustainable Energy Systems", the competencies of process understanding, system understanding, modeling, concept development, data analysis & interpretation and measurement methods are taught, applied and examined. Programming is applied. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The global energy transition; Key performance indicators of sustainable energy systems; Optimization models; Heat integration and heat exchanger networks; Life-cycle assessment; Models for conversion, storage and transport technologies; Multi-energy systems; Design, operations and analysis of energy systems; Uncertainties in energy system modeling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture slides and supplementary documentation will be available online. Reference to appropriate book chapters and scientific papers will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-1633-00L | Energy Conversion This course is intended for students outside of D-MAVT. | 4 KP | 3G | G. Sansavini, S. A. Hosseini, I. Karlin | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course provides the students with an introduction to thermodynamics and energy conversion. Students shall gain basic understanding of energy and energy interactions as well as their link to energy conversion technologies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Thermodynamics is key to understanding and use of energy conversion processes in Nature and technology. Main objective of this course is to give a compact introduction into basics of Thermodynamics: Thermodynamic states and thermodynamic processes; Work and Heat; First and Second Laws of Thermodynamics. Students shall learn how to use energy balance equation in the analysis of power cycles and shall be able to evaluate efficiency of internal combustion engines, gas turbines and steam power plants. The course shall extensively use thermodynamic charts to building up students’ intuition about opportunities and restrictions to increase useful work output of energy conversion. Thermodynamic functions such as entropy, enthalpy and free enthalpy shall be used to understand chemical and phase equilibrium. The course also gives introduction to refrigeration cycles, combustion and refrigeration. The course compactly covers the standard course of thermodynamics for engineers, with additional topics of a general physics interest (nonideal gas equation of state and Joule-Thomson effect) also included. In the course "Energy Conversion", the competencies of process understanding and system understanding are applied and examined and the competencies process understanding and modeling are taught. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. Thermodynamic systems, states and state variables 2. Properties of substances: Water, air and ideal gas 3. Energy conservation in closed and open systems: work, internal energy, heat and enthalpy 4. Second law of thermodynamics and entropy 5. Energy analysis of steam power cycles 6. Energy analysis of gas power cycles 7. Refrigeration and heat pump cycles 8. Nonideal gas equation of state and Joule-Thomson effect 9. Maximal work and exergy 10. Mixtures 11. Chemical reactions and combustion systems; chemical and phase equilibrium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture slides and supplementary documentation will be available online. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Thermodynamics: An Engineering Approach, by Cengel, Y. A. and Boles, M. A., McGraw Hill | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | This course is intended for students outside of D-MAVT. Students are assumed to have an adequate background in calculus, physics, and engineering mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
364-1058-00L | Risk Center Seminar Series | 0 KP | 2S | H. Schernberg, D. Basin, A. Bommier, D. N. Bresch, S. Brusoni, L.‑E. Cederman, P. Cheridito, F. Corman, H. Gersbach, C. Hölscher, K. Paterson, G. Sansavini, B. Stojadinovic, B. Sudret, J. Teichmann, R. Wattenhofer, S. Wiemer, R. Zenklusen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling complex socio-economic systems and crises. Students and other guests are welcome. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Participants should learn to get an overview of the state of the art in the field, to present it in a well understandable way to an interdisciplinary scientific audience, to develop novel mathematical models for open problems, to analyze them with computers, and to defend their results in response to critical questions. In essence, participants should improve their scientific skills and learn to work scientifically on an internationally competitive level. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling complex socio-economic systems and crises. For details of the program see the webpage of the colloquium. Students and other guests are welcome. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | There is no script, but a short protocol of the sessions will be sent to all participants who have participated in a particular session. Transparencies of the presentations may be put on the course webpage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Literature will be provided by the speakers in their respective presentations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Participants should have relatively good mathematical skills and some experience of how scientific work is performed. |