Paolo Tiso: Katalogdaten im Herbstsemester 2023 |
Name | Herr Dr. Paolo Tiso |
Adresse | Chair in Nonlinear Dynamics ETH Zürich, LEE M 205 Leonhardstrasse 21 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 36 41 |
ptiso@ethz.ch | |
Departement | Maschinenbau und Verfahrenstechnik |
Beziehung | Dozent |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
151-0223-10L | Technische Mechanik | 4 KP | 2V + 2U + 1K | P. Tiso | |
Kurzbeschreibung | Einführung in die Technische Mechanik: Kinematik, Statik und Dynamik von starren Körpern und Systemen. | ||||
Lernziel | Einfache Problemstellungen der technischen Mechanik können analysiert und gelöst werden. | ||||
Inhalt | Grundlagen: Lage und Geschwindigkeit materieller Punkte, starre Körper, ebene Bewegung, Kinematik starrer Körper, Kraft, Moment, Leistung. Statik: Äquivalenz und Reduktion von Kräftegruppen, Kräftemittelpunkt und Massenmittelpunkt, Gleichgewicht, Prinzip der virtuellen Leistungen, Hauptsatz der Statik, Bindungen, Analytische Statik, Reibung. Dynamik: Beschleunigung, Trägheitskräfte, Prinzip von d'Alembert, Newtonsches Bewegungsgesetz, Impulssatz, Drallsatz, Drall bei ebenen Bewegungen. | ||||
Skript | ja | ||||
Literatur | M. B. Sayir, J. Dual, S. Kaufmann, E. Mazza: Ingenieurmechanik 1, Grundlagen und Statik. Springer Vieweg, Wiesbaden, 2015. M. B. Sayir, S. Kaufmann: Ingenieurmechanik 3, Dynamik. Springer Vieweg, Wiesbaden, 2014. | ||||
173-0007-00L | Dynamics ![]() | 6 KP | 13G | E. Chatzi, V. Ntertimanis, P. Tiso | |
Kurzbeschreibung | The course offers an introduction to dynamics of engineering systems. The first part focuses on Newtonian dynamics and energy principle to systems of particles and rigid bodies. The second part focuses on the free and forced response of single- and multi-degrees-of-freedom linear systems. Hands-on exercises, computer-based labs and experimental demos will support the theoretical lectures. | ||||
Lernziel | After successful completion of this course the students will be able to: 1. Set up the kinematic description of a system of particles and rigid bodies subject to constraints. 2. Formulate the governing equations of motion of a system particles or of rigid bodies using balance law. 3. Alternative from the above, the student will be able to derive the equations of motion using Lagrange’s equations, d’Alembert’s principle, and Hamilton’s principle. 4. Find the equilibrium configurations of a given system, and perform linearization. 5. Compute the dynamic response of discrete systems to harmonic, periodic, pulse, and impulse excitation using time-history and response-spectrum methods. | ||||
Inhalt | Day-by-day course content: Week 1 Day 1 – Recap on Newtonian Dynamics for single particle Day 2 – Kinetics of systems of particles Day 3 – Kinetics of Rigid bodies Day 4 – Analytical mechanics Week 2 Day 6 – Mechanical Vibrations Day 7 – Elements of Structural Vibration - SDOF Day 8 – Elements of Vibration Theory - MDOF Day 9 – State Space Representations Day 10 – Transformations | ||||
Skript | The material will be organized in lecture slides. | ||||
Literatur | A specific list of books will be offered as useful/supplemental reading. |