Melanie Zeilinger: Katalogdaten im Frühjahrssemester 2022

Auszeichnung: Die Goldene Eule
NameFrau Prof. Dr. Melanie Zeilinger
LehrgebietIntelligente Regelsysteme
Adresse
Inst. Dynam. Syst. u. Regelungst.
ETH Zürich, LEE L 210
Leonhardstrasse 21
8092 Zürich
SWITZERLAND
Telefon+41 44 632 53 45
E-Mailmzeilinger@ethz.ch
DepartementMaschinenbau und Verfahrenstechnik
BeziehungAusserordentliche Professorin

NummerTitelECTSUmfangDozierende
151-0073-31LGuidance, Navigation and Control for Recovery of a Sounding Rocket Belegung eingeschränkt - Details anzeigen
Voraussetzung: Besuch der Lerneinheit 151-0073-30L Guidance, Navigation and Control for Recovery of a Sounding Rocket im HS21.
14 KP15AM. Zeilinger
KurzbeschreibungIm Team ein Produkt von A-Z entwickeln und realisieren! Anwenden und Vertiefen des bestehenden Wissens, Arbeiten in Teams, Selbständigkeit, Problemstrukturierung, Lösungsfindung in unscharfen Problemstellungen, Systembeschreibung und -simulation, Präsentation und Dokumentation, Realisationsfähigkeit, Werkstatt- und Industriekontakte, Anwendung modernster Ingenieur-Werkzeuge (Matlab, Simulink usw).
LernzielDie vielfältigen Lernziele dieses Fokus-Projektes sind:
- Synthetisieren und Vertiefen des theoretischen Wissens aus den Grundlagenfächern des 1.-4. Semesters
- Teamorganisation, Arbeiten in Teams, Steigerung der sozialen Kompetenz
- Selbständigkeit, Initiative, selbständiges Lernen neuer Themeninhalte
- Problemstrukturierung, Lösungsfindung in unscharfen Problemstellungen, Suchen von Informationen
- Systembeschreibung und -simulation
- Präsentationstechnik, Dokumentationserstellung
- Entscheidungsfähigkeit, Realisationsfähigkeit
- Werkstatt- und Industriekontakte
- Erweiterung und Vertiefung von Sachwissen
- Beherrschung modernster Ingenieur-Werkzeuge (Matlab, Simulink, CAD, CAE, PDM)
151-0660-00LModel Predictive Control Information 4 KP2V + 1UM. Zeilinger
KurzbeschreibungModel predictive control is a flexible paradigm that defines the control law as an optimization problem, enabling the specification of time-domain objectives, high performance control of complex multivariable systems and the ability to explicitly enforce constraints on system behavior. This course provides an introduction to the theory and practice of MPC.
LernzielDesign and implement Model Predictive Controllers (MPC) for various system classes to provide high performance controllers with desired properties (stability, tracking, robustness,..) for constrained systems.
Inhalt- Review of required optimal control theory
- Basics on optimization
- Receding-horizon control (MPC) for constrained linear systems
- Theoretical properties of MPC: Constraint satisfaction and stability
- Computation: Explicit and online MPC
- Practical issues: Tracking and offset-free control of constrained systems, soft constraints
- Robust MPC: Robust constraint satisfaction
- Simulation-based project providing practical experience with MPC
SkriptScript / lecture notes will be provided.
Voraussetzungen / BesonderesOne semester course on automatic control, Matlab, linear algebra.
Courses on signals and systems and system modeling are recommended. Important concepts to start the course: State-space modeling, basic concepts of stability, linear quadratic regulation / unconstrained optimal control.

Expected student activities: Participation in lectures, exercises and course project; homework (~2hrs/week).
173-0003-00LSignals and Systems Belegung eingeschränkt - Details anzeigen
Only for MAS in Advanced Fundamentals of Mechatronics Engineering
5 KP11GM. Zeilinger, A. Carron
KurzbeschreibungSignals arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals.
LernzielMaster the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise.
InhaltDiscrete-time signals and systems. Fourier- and z-Transforms. Frequency domain characterization of signals and systems. Time series analysis. Filter design.
SkriptLecture notes available on course website.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenProblemlösunggeprüft
364-1058-00LRisk Center Seminar Series0 KP2SH. Schernberg, D. Basin, A. Bommier, D. N. Bresch, S. Brusoni, L.‑E. Cederman, P. Cheridito, F. Corman, H. Gersbach, C. Hölscher, K. Paterson, G. Sansavini, D. Sornette, B. Stojadinovic, B. Sudret, J. Teichmann, R. Wattenhofer, U. A. Weidmann, S. Wiemer, M. Zeilinger, R. Zenklusen
KurzbeschreibungIn this series of seminars, invited speakers discuss various topics in the area of risk modelling, governance of complex socio-economic systems, managing risks and crises, and building resilience. Students, PhD students, post-docs, faculty and individuals outside ETH are welcome.
LernzielParticipants gain insights in a broad range of risk- and resilience-related topics. They expand their knowledge of the field and deepen their understanding of the complexity of our social, economic and engineered systems. For young researchers in particular, the seminars offer an opportunity to learn academic presentation skills and to network with an interdisciplinary scientific audience.
InhaltAcademic presentations from ETH faculty as well as external researchers.
Each seminar is followed by a Q&A session and (when permitted) a networking Apéro.
SkriptThe sessions are recorded whenever possible and posted on the ETH Risk Center webpage. If available, presentation slides are shared as well.
LiteraturEach speaker will provide a literature review.
Voraussetzungen / BesonderesIn most cases, a quantitative background is required. Depending on the topic, field-specific knowledge may be required.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengefördert
Verfahren und Technologiengefördert
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Entscheidungsfindunggefördert
Medien und digitale Technologiengefördert
Problemlösunggefördert
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengefördert
Kritisches Denkengefördert
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert