Rima Alaifari: Katalogdaten im Frühjahrssemester 2023

NameFrau Prof. Dr. Rima Alaifari
LehrgebietAngewandte Mathematik
Adresse
Seminar für Angewandte Mathematik
ETH Zürich, HG G 59.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 32 00
E-Mailrima.alaifari@sam.math.ethz.ch
URLhttp://www.sam.math.ethz.ch/~rimaa
DepartementMathematik
BeziehungAssistenzprofessorin

NummerTitelECTSUmfangDozierende
401-4652-DRLInverse Problems Belegung eingeschränkt - Details anzeigen
Only for ETH D-MATH doctoral students and for doctoral students from the Institute of Mathematics at UZH. The latter need to send an email to Jessica Bolsinger (info@zgsm.ch) with the course number. The email should have the subject „Graduate course registration (ETH)“.
1 KP2GR. Alaifari
KurzbeschreibungInverse problems arise in many applications in science & engineering. Typically, a physical model describes a forward problem and the task is to reconstruct from measurements, i.e. to perform inversion. In ill-posed problems, these inversions are troublesome as the inverse lacks e.g. stability. Regularization theory studies the controlled extraction of information from such systems.
LernzielThe goal of this course is to give an understanding of ill-posedness and how it arises and to introduce the theory of regularization, which gives a mathematical framework to handle these delicate systems.
InhaltLinear inverse problems, compact operators and singular value decompositions, regularization of linear inverse problems, regularization penalties, regularization parameters and parameter choice rules, iterative regularization schemes and stopping criteria, non-linear inverse problems.
SkriptThe lecture notes will be made available during the semester.
LiteraturEngl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems (Vol. 375). Springer Science & Business Media.
Voraussetzungen / BesonderesAnalysis, linear algebra, numerical analysis, ideal but not necessary: functional analysis
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Problemlösunggeprüft
Persönliche KompetenzenKreatives Denkengefördert
Kritisches Denkengeprüft
401-4652-23LInverse Problems4 KP2GR. Alaifari
KurzbeschreibungInverse problems arise in many applications in science & engineering. Typically, a physical model describes a forward problem and the task is to reconstruct from measurements, i.e. to perform inversion. In ill-posed problems, these inversions are troublesome as the inverse lacks e.g. stability. Regularization theory studies the controlled extraction of information from such systems.
LernzielThe goal of this course is to give an understanding of ill-posedness and how it arises and to introduce the theory of regularization, which gives a mathematical framework to handle these delicate systems.
InhaltLinear inverse problems, compact operators and singular value decompositions, regularization of linear inverse problems, regularization penalties, regularization parameters and parameter choice rules, iterative regularization schemes and stopping criteria, non-linear inverse problems.
SkriptThe lecture notes will be made available during the semester.
LiteraturEngl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems (Vol. 375). Springer Science & Business Media.
Voraussetzungen / BesonderesAnalysis, linear algebra, numerical analysis, ideal but not necessary: functional analysis
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Problemlösunggeprüft
Persönliche KompetenzenKreatives Denkengefördert
Kritisches Denkengeprüft
401-5650-00LZurich Colloquium in Applied and Computational Mathematics Information 0 KP1KR. Abgrall, R. Alaifari, H. Ammari, R. Hiptmair, S. Mishra, S. Sauter, C. Schwab
KurzbeschreibungForschungskolloquium
Lernziel